On the Convergence of Stochastic MPC to Terminal Modes of Operation

Diego Muñoz-Carpintero Universidad de Chile

Mark Cannon University of Oxford

26 June 2019

Introduction to Stochastic MPC

$x_{k+1} = Ax_k + Bu_k + w_k$
$\mathbb{P}\{(x,u)\in\mathcal{Y}\}\geq p$
$\mathcal{Y} = \{(x, u) : Fx + Gu \le 1\}$
$w \in \mathcal{W}$

Stochastic MPC

At k = 0, 1, ...:

• obtain
$$x_k$$
 and optimize $\{u_k(x_k), \dots, u_{k+N-1}(x_{k+N-1})\}$:

$$\min_{u_k(\cdot),\dots,u_{k+N-1}(\cdot)} \mathbb{E}\left\{F(x_{k+N}) + \sum_{j=0}^{N-1} \ell(x_{k+j}, u_{k+j})\right\}$$
s.t.

$$x_{k+j+1} = Ax_{k+j} + Bu_{k+j} + w_{k+j}$$

$$\mathbb{P}\{(x_{k+j}, u_{k+j}) \in \mathcal{Y}\} \ge p$$

$$x_{k+N} \in \tilde{\mathbb{X}}_f$$

• apply first element of optimal sequence: $u_k = u_k^*(x_k)$

1. Negative Drift Conditions

There exist measurable functions $V : \mathbb{R}^{n_x} \to [0,\infty)$, $\Psi : \mathbb{R}^{n_x} \to [0,\infty)$ and a bounded and measurable set $\mathcal{Z} \subset \mathbb{R}^{n_x}$, such that

$$\mathbb{E}\{V(x_1) \mid x_0 = x\} - V(x) \le -\Psi(x) \quad \forall x \notin \mathcal{Z}$$

- This implies boundedness of $\mathbb{E}\{V(x_k) | x_0 = x\}_{k \in \mathbb{N}}$
- Stochastic MPC typically ensures a drift condition, e.g.:

$$\mathbb{E}\{V(x_1) \mid x_0 = x\} - V(x) \le -(1-\lambda)V(x) \quad \forall x \notin \mathcal{Z}$$

for $\lambda \in (0,1)$, for some \mathcal{Z}

But this doesn't give non-conservative ultimate bounds on x or a probabilistic description of the terminal regime

2. Convergence of average performance

$$\lim_{k \to \infty} \frac{1}{k} \sum_{j=1}^{k} \mathbb{E}\{x_j^\top Q x_j + u_j^\top R u_j\} \le L_{ss}$$

- An alternative notion of convergence of Stochastic MPC via asymptotic average performance
- Results in conservative bounds except in special cases (e.g. if u_k converges to certainty equivalent optimal feedback)

3. Input to state stability (ISS)

The origin of $x_{k+1} = f(x_k, w_k)$ is ISS with region of attraction $\mathbf{X} \subseteq \mathbb{R}^{n_x}$ if $x_k \in \mathbf{X}$ for all k, all $x_0 \in \mathbf{X}$ and all $w \in \mathcal{W}$, and $\|x_k\| \le \beta(\|x_0\|, k) + \gamma(\sup_{t < k} \{\|w_t\|\})$ where β is a \mathcal{KL} -function and γ is a \mathcal{K} -function

Lemma: ISS [Jiang & Wang, 2001]

The origin of $x_{k+1} = f(x_k, w_k)$ is ISS with region of attraction $\mathbf{X} \subseteq \mathbb{R}^{n_x}$ if \mathbf{X} contains the origin in its interior and is robustly invariant, and a continuous function $V : \mathbf{X} \to \mathbb{R}_+$ (called an ISS-Lyapunov function) exists satisfying, for all $x \in \mathbf{X}$ and $w \in \mathcal{W}$,

 $\alpha_1(\|x\|) \le V(x) \le \alpha_2(\|x\|)$

 $V(f(x,w)) - V(x) \le -\alpha_3(||x||) + \sigma(||w||)$

where $\alpha_1, \alpha_2, \alpha_3$ are \mathcal{K}_{∞} -functions and σ is a \mathcal{K} -function

3. Input to state stability (ISS)

The origin of $x_{k+1} = f(x_k, w_k)$ is ISS with region of attraction $\mathbf{X} \subseteq \mathbb{R}^{n_x}$ if $x_k \in \mathbf{X}$ for all k, all $x_0 \in \mathbf{X}$ and all $w \in \mathcal{W}$, and $\|x_k\| \le \beta(\|x_0\|, k) + \gamma(\sup_{t < k} \{\|w_t\|\})$ where β is a \mathcal{KL} -function and γ is a \mathcal{K} -function

Lemma: ISS [Jiang & Wang, 2001]

The origin of $x_{k+1} = f(x_k, w_k)$ is ISS with region of attraction $\mathbf{X} \subseteq \mathbb{R}^{n_x}$ if \mathbf{X} contains the origin in its interior and is robustly invariant, and a continuous function $V : \mathbf{X} \to \mathbb{R}_+$ (called an ISS-Lyapunov function) exists satisfying, for all $x \in \mathbf{X}$ and $w \in \mathcal{W}$,

$$\begin{split} \alpha_1(\|x\|) &\leq V(x) \leq \alpha_2(\|x\|) \\ V\big(f(x,w)\big) - V(x) \leq -\alpha_3(\|x\|) + \sigma(\|w\|) \end{split}$$
 where $\alpha_1, \alpha_2, \alpha_3$ are \mathcal{K}_∞ -functions and σ is a \mathcal{K} -function

ISS implies:

- the origin is asymptotically stable for $x_{k+1} = f(x_k, 0)$
- all state trajectories are bounded since $\ensuremath{\mathcal{W}}$ is bounded
- all trajectories converge to the origin as $k \to \infty$ if $w_k \to 0$
- \ldots but it doesn't provide
 - ${\ensuremath{\, \circ }}$ non-conservative ultimate bounds on x
 - a probabilistic description of the terminal regime

Observation: many Stochastic MPC analyses give qualitative stability/convergence results but do not characterize asymptotic behaviour exactly

Goal: general conditions characterizing exact asymptotic behavior under Stochastic MPC

Tools: (i) results on convergence of Markov chains (ii) ISS properties of controlled systems

Definition (Markov chain)

Consider a measurable space $(\mathbf{X}, \mathcal{B}(\mathbf{X}))$ and a stochastic process $\mathbf{x} := \{x_k \in \mathbf{X}\}_{k \in \mathbb{N}}$ defined on (Ω, \mathcal{F}) , where \mathcal{F} is a σ -algebra on $\Omega := \prod_{i=0}^{\infty} \mathbf{X}_i$, and $\mathbf{X}_i = \mathbf{X}$ for all i. Then \mathbf{x} is a time-homogenous Markov chain with transition probability function

$$P(x,\mathcal{A}) \coloneqq \mathbb{P}\{x_{k+1} \in \mathcal{A} : x_k = x\}$$

if the distribution of x satisfies the Markov property

$$\mathbb{P}\{x_{k+1} \in \mathcal{A} : x_j = \bar{x}_j, \, j \in \mathbb{N}_k\} = P(\bar{x}_k, \mathcal{A})$$

Definition (Invariant measure)

For the Markov chain \mathbf{x} an invariant probability measure is a stationary distribution, i.e. a probability measure π satisfying

$$\pi(\mathcal{A}) = \int \pi(dx) P(x, \mathcal{A}), \quad \forall \mathcal{A} \in \mathcal{B}(\mathbf{X})$$

Markov chain convergence results [e.g. Meyn and Tweedie, 2005]:

Let ${\bf x}$ be a $\varphi\text{-irreducible}$ Markov chain with state space ${\bf X}\subseteq \mathbb{R}^{n_x}$ such that

- (i) **x** is generated by $x_{k+1} = f(x_k, w_k)$, for some continuous $f : \mathbf{X} \times \mathcal{W} \to \mathbf{X}$ and a stochastic disturbance $\{w_k \in \mathcal{W}\}_{k \in \mathbb{N}}$
- (ii) \mathbf{x} is aperiodic
- (iii) $\operatorname{supp}(\varphi)$ has non-empty interior
- (iv) there is a measurable function $V : \mathbf{X} \to [0, \infty)$ such that for any $c < \infty$ the set $\mathcal{C}_V(c) := \{y : V(y) \le c\}$ is compact, and there is a compact set \mathcal{C} satisfying for all $x_k \in \mathbf{X}$:

$$\mathbb{E}\{V(x_{k+1})\} - V(x_k) \le -1 + b\mathbf{1}_{\mathcal{C}}(x_k)$$

Markov chain convergence results [e.g. Meyn and Tweedie, 2005]:

then

Theorem (Markov chain convergence)

An invariant probability measure $\pi(\cdot)$ exists satisfying

$$\lim_{k \to \infty} \sup_{\mathcal{A} \in \mathcal{B}(X)} |P^k(x, \mathcal{A}) - \pi(\mathcal{A})| = 0$$

where $P^k(x, \mathcal{A}) \coloneqq \mathbb{P}\{x_k \in \mathcal{A} : x_0 = x\}$, and the Law of Large Numbers:

$$\lim_{k \to \infty} \frac{1}{k} \sum_{j=1}^{k} h(x_j) \stackrel{a.s.}{=} \mathbb{E}_{\pi} \{ h(x) \}$$

holds for any $h : \mathbf{X} \to \mathbb{R}$ such that $\mathbb{E}_{\pi}\{|h(x)|\} < \infty$ where $\mathbb{E}_{\pi}\{h(x)\} \coloneqq \int \pi(dx)h(x)$

We apply these results to systems of the form

$$x_{k+1} = f(x_k, w_k) \coloneqq g(x_k) + Dw_k,$$

with $x_k \in \mathbf{X}$, $w_k \in \mathcal{W}$ and $g : \mathbf{X} \to \mathbf{X}$ continuous with g(0) = 0

Assumption 1. (Disturbance distribution)

The disturbance sequence $\{w_k \in W\}_{k \in \mathbb{N}}$ is i.i.d., with $\mathbb{E}\{w_k\} = 0$ and a non-singular probability distribution such that

 $\mathbb{P}\{\|w\| \le \lambda\} > 0 \quad \forall \lambda > 0$

Suppose there is a linear terminal mode of operation to which we want to prove convergence

Assumption 2. (Linear terminal mode)

There exists a bounded set $X_f \subseteq X$ containing the origin in its interior, such that for all $x \in X_f$,

(i)
$$f(x,w) \in \mathbf{X}_f$$
 for all $w \in \mathcal{W}$
(ii) $f(x,w) = Ax + Dw$ for all $x \in \mathbf{X}_f$, where A is Schur stable
and (A, D) is controllable

Then the linear terminal dynamics define a transition probability function $P(x,\cdot)$ and an invariant probability measure $\pi(\cdot)$, where

- π is the probability measure of $\sum_{k=0}^{\infty} A^k D w_k$
- the support of π is the minimal invariant set $\mathbf{X}_{\infty} = \bigoplus_{k=0}^{\infty} A^k D \mathcal{W}$

Assumption 3. (ISS)

The system $x_{k+1} = g(x_k) + Dw_k$ has an ISS-Lyapunov function

- Clearly this implies that the origin is ISS, but it does not directly guarantee convergence to the terminal mode of operation
- The ISS property can be coupled with the stochastic nature of the disturbance sequence to prove convergence to X_f

Convergence for ISS systems: main result

Under Assumptions 1-3, the Markov chain convergence results imply:

Theorem

The system $x_{k+1} = g(x_k) + Dw_k$ satisfies

$$\lim_{k \to \infty} \sup_{\mathcal{A} \in \mathcal{B}(X)} |P^k(x, \mathcal{A}) - \pi(\mathcal{A})| = 0$$

where $\pi(\cdot)$ is the invariant probability measure associated with the terminal linear dynamics and $P^k(x, \mathcal{A}) \coloneqq \mathbb{P}\{x_k \in \mathcal{A} : x_0 = x\}$, and

$$\lim_{k \to \infty} \frac{1}{k} \sum_{j=1}^{k} h(x_j) \stackrel{a.s.}{=} \mathbb{E}_{\pi} \{ h(x) \}$$

holds for any $h : \mathbf{X} \to \mathbb{R}$ such that $\mathbb{E}_{\pi}\{|h(x)|\} < \infty$ where $\mathbb{E}_{\pi}\{h(x)\} := \int \pi(dx)h(x)$ Convergence for ISS systems: main result

This implies convergence to the minimal invariant set $\mathbf{X}_{\infty}=\bigoplus_{k=0}^{\infty}A^kD\mathcal{W}$

Corollary

The system $x_{k+1} = g(x_k) + Dw_k$ satisfies

 $\lim_{k \to \infty} \mathbb{P}\{x_k \in \mathbf{X}_{\infty}\} = 1.$

Convergence for Stochastic MPC

Interpretation

- the system converges to the minimal Robust Positively Invariant (mRPI) set
- average performance converges to that of the terminal linear mode

These results can be applied to many Stochastic MPC algorithms We consider two formulations:

1. Affine in the disturbance SMPC

P. Goulart and E. Kerrigan, *Input-to-state stability of robust receding horizon control with an expected value cost*, Automatica, 2008

2. Striped affine in the disturbance SMPC

B. Kouvaritakis, M. Cannon, and D. Muñoz-Carpintero, *Efficient* prediction strategies for disturbance compensation in stochastic MPC, International Journal of Systems Science, 2013

Convergence for Stochastic MPC

Both strategies consider the system

$$x_{k+1} = Ax_k + Bu_k + Dw_k$$

and assume that

- $\star x_k$ is measured at time k
- \star (A,B) is stabilizable
- \star the disturbance sequence $\{w_k \in \mathcal{W}\}_{k \in \mathbb{N}}$ is i.i.d. with $\mathbb{E}\{w_k\} = 0$
- \star the probability distribution of w_k is finitely supported in a bounded set \mathcal{W} containing the origin in its interior

Here we additionally assume

 $\star \ \mathbb{P}\{\|w\| \leq \lambda\} > 0 \text{ for all } \lambda > 0$

▷ State and control constraints:

$$(x_k, u_k) \in \mathbf{Z} \quad \forall k$$

 $\mathbf{Z} \subset \mathbb{R}^{n_x} \times \mathbb{R}^{n_u}$ is a convex compact set with $0 \in int(\mathbf{Z})$

 \triangleright The predicted control sequence at time k is parameterized as

$$u_{i|k} = v_{i|k} + \sum_{j=0}^{i-1} M_{i,j} w_{j|k}, \quad i \in \mathbb{N}_{N-1}$$

where $v_{i|k}$ and $M_{i,j}$ are optimization variables at time k, and

$$u_{i|k} = K x_{i|k}, \quad i \ge N$$

▷ MPC cost function:

$$J = \mathbb{E}\Big\{x_{N|k}^{\top} P x_{N|k} + \sum_{i=0}^{N-1} \big(x_{i|k}^{\top} Q x_{i|k} + u_{i|k}^{\top} R u_{i|k}\big)\Big\},\$$

with $Q \succeq 0$, $R \succ 0$, $P \succ 0$ and $(A, Q^{1/2})$ assumed detectable, where P and K satisfy the algebraic Riccati equation

$$P = Q + A^{\top}PA - K^{\top}(R + B^{\top}PB)K$$
$$K = -(R + B^{\top}PB)^{-1}B^{\top}PA$$

> A terminal constraint is included in the optimal control problem:

$$x_{N|k} \in \mathbf{X}_f,$$

where \mathbf{X}_f is a robust positively invariant set under u = Kx

Optimal control problem solved at each instant k:

$$\min_{\mathbf{u}_k, \mathbf{x}_k, \theta_k} J$$
subject to $x_{i+1|k} = Ax_{i|k} + Bu_{i|k} + Dw_{i|k}$
 $u_{i|k} = v_{i|k} + \sum_{j=0}^{i-1} M_{i,j}w_{j|k}$
 $(x_{i|k}, u_{i|k}) \in \mathbf{Z}$
 $x_{0|k} = x_k, \quad x_{N|k} \in \mathbf{X}_f$
 $\forall w_{i|k} \in \mathcal{W}, \ \forall i \in \mathbb{N}_{N-1}$

where
$$\theta_k = (\{v_{i|k}\}_{i \in \mathbb{N}_{N-1}}, \{M_{i,j}\}_{j \in \mathbb{N}_{N-1}, i \in \{1, \dots, N-1\}})$$

- Goulart & Kerrigan (2008) prove that the origin is ISS, but no further results on convergence to the terminal mode
- Wang et al. (2008) prove convergence to the mRPI set by redefining the cost and control policy

Under the assumptions that $\left\{ \begin{array}{l} (A + BK, D) \text{ is controllable} \\ \mathbb{P}\{\|w\| \leq \lambda\} > 0 \text{ for all } \lambda > 0 \end{array} \right\} \text{ we have:}$

Theorem

For any feasible initial state, $x_0 \in \mathbf{X}$, the closed loop system satisfies

$$\lim_{k \to \infty} \mathbb{P}\{x_k \in \mathbf{X}_\infty\} = 1$$

and

wl

$$\lim_{k \to \infty} \frac{1}{k} \sum_{j=1}^{k} (x_j^{\top} Q x_j + u_j^{\top} R u_j) \stackrel{a.s.}{=} \lim_{k \to \infty} \mathbb{E} \left\{ \xi_k^{\top} (Q + K^{\top} R K) \xi_k \right\}$$

where $\xi_{k+1} = (A + B K) \xi_k + D w_k$ with $\xi_0 = x_0$

▷ States and controls are subject to probabilistic constraints $\mathbb{P}\{f^{\top}x_{k+1} + g^{\top}u_k \leq 1\} \geq p,$ where $g \in \mathbb{R}^{n_x}$, $f \in \mathbb{R}^{n_u}$, $p \in (0, 1]$.

▷ Predicted control inputs have the structure:

$$u_{i|k} = Kx_{i|k} + c_{i|k} + \sum_{j=1}^{i-1} L_j w_{i-j|k}, \quad i \in \mathbb{N}_{N-1}$$
$$u_{i|k} = Kx_{i|k} + \sum_{j=1}^{N-1} L_j w_{i-j|k}, \quad i \ge N$$

where $c_{i|k}$ are optimization variables and A + BK is Schur stable L_j are computed offline by minimizing constraint tightening parameters bounding the effects of disturbances on constraints

▷ MPC cost function:

$$J = \mathbb{E}\left\{\sum_{i=0}^{\infty} \left(x_{i|k}^{\top} Q x_{i|k} + u_{i|k}^{\top} R u_{i|k} - L_{ss}\right)\right\}$$

where $Q, R \succ 0$, K satisfies the algebraic Riccati equation

$$P = Q + A^{\top}PA - K^{\top}(R + B^{\top}PB)K$$
$$K = -(R + B^{\top}PB)^{-1}B^{\top}PA$$

and

$$L_{ss} = \lim_{i \to \infty} \mathbb{E} \{ x_{i|k}^\top Q x_{i|k} + u_{i|k}^\top R u_{i|k} \}$$

Optimal control problem solved at each instant k:

$$\begin{split} \min_{\mathbf{u}_k, \mathbf{x}_k, \mathbf{c}_k} & J \\ \text{subject to} & x_{i+1|k} = A x_{i|k} + B u_{i|k} + D w_{i|k} \\ & u_{i|k} = c_{i|k} + K x_{i|k} + \sum_{j=1}^{i-1} L_j w_{i-j|k} \\ & \mathbb{P}\{f^\top x_{i+1|k} + g^\top u_{i|k} \leq 1\} \geq p \\ & x_{0|k} = x_k \\ & \forall w_{i|k} \in \mathcal{W}, \ \forall i \in \mathbb{N}_{N+N_2-1} \end{split}$$

with ${\cal N}_2$ is chosen large enough to ensure constraint satisfaction over an infinite prediction horizon

▷ The optimal value function satisfies (Kouvaritakis et al, 2013): $\mathbb{E}\{V_{k+1}\} - V_k \leq -(x_k^\top Q x_k + u_k^\top R u_k) + L_{ss}$ where $L_{ss} = l_{ss} + \mathbb{E}\{w^\top \mathcal{L}^\top \tilde{P}_c \mathcal{L} w\},$ $l_{ss} = \lim_{k \to \infty} \mathbb{E}\{\xi_k^\top (Q + K^\top R K)\xi_k\}$ with $\xi_{k+1} = (A + BK)\xi_k + Dw_k$ and $\xi_0 = x_0$.

▷ This implies

$$\lim_{k \to \infty} \frac{1}{k} \sum_{j=1}^{k} \mathbb{E}\{x_j^\top Q x_j + u_j^\top R u_j\} \le L_{ss}.$$

However, the state converges to the mRPI set \mathbf{X}_∞ and

$$\lim_{k \to \infty} \frac{1}{k} \sum_{j=1}^{k} (x_j^\top Q x_j + u_j^\top R u_j) = l_{ss}$$

which is the asymptotic performance under $u_k = K x_k$.

Under the assumptions that
$$\left\{ \begin{array}{l} (A+BK,D) \text{ is controllable} \\ \mathbb{P}\{\|w\| \leq \lambda\} > 0 \text{ for all } \lambda > 0 \end{array} \right\} \text{ we have:}$$

Theorem

For any feasible initial state, $x_0 \in \mathbf{X}$, the closed loop system satisfies

$$\lim_{k \to \infty} \mathbb{P}\{x_k \in \mathbf{X}_\infty\} = 1$$

and

$$\lim_{k \to \infty} \frac{1}{k} \sum_{j=1}^{k} (x_j^\top Q x_j + u_j^\top R u_j) \stackrel{a.s.}{=} \lim_{k \to \infty} \mathbb{E} \left\{ \xi_k^\top (Q + K^\top R K) \xi_k \right\}$$

where $\xi_{k+1} = (A + BK)\xi_k + Dw_k$ with $\xi_0 = x_0$.

Concluding Remarks

▷ Generalized analysis of Stochastic MPC convergence:

- * Markov chain convergence results determine asymptotic behaviour of control laws that result in linear dynamics on an RPI terminal set
- $\star\,$ Average closed loop performance converges to that of the linear dynamics on the terminal set
- These results are obtained using an ISS property, but the limit directly implied by the ISS Lyapunov inequality yields a worse bound
- The paper illustrates the convergence analysis by applying it to two Stochastic MPC strategies
- \triangleright Future work: remove condition on controllability of (A, D)