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Diego Muñoz-Carpintero
Universidad de Chile

Mark Cannon
University of Oxford

26 June 2019

1



Introduction to Stochastic MPC

System xk+1 = Axk +Buk + wk

Constraints P{(x, u) ∈ Y} ≥ p
Y = {(x, u) : Fx+Gu ≤ 1}

Stochastic disturbance w ∈ W

Stochastic MPC
At k = 0, 1, . . . :

obtain xk and optimize {uk(xk), . . . , uk+N−1(xk+N−1)}:

min
uk(·),...,uk+N−1(·)

E
{
F (xk+N ) +

N−1∑
j=0

`(xk+j , uk+j)

}
s.t. xk+j+1 = Axk+j +Buk+j + wk+j

P{(xk+j , uk+j) ∈ Y} ≥ p
xk+N ∈ X̃f

apply first element of optimal sequence: uk = u∗k(xk)
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Stability and convergence results for Stochastic MPC

1. Negative Drift Conditions

There exist measurable functions V : Rnx → [0,∞), Ψ : Rnx → [0,∞)
and a bounded and measurable set Z ⊂ Rnx , such that

E{V (x1) |x0 = x} − V (x) ≤ −Ψ(x) ∀x /∈ Z

This implies boundedness of E{V (xk) |x0 = x}k∈N

Stochastic MPC typically ensures a drift condition, e.g.:

E{V (x1) |x0 = x} − V (x) ≤ −(1− λ)V (x) ∀x /∈ Z

for λ ∈ (0, 1), for some Z

But this doesn’t give non-conservative ultimate bounds on x
or a probabilistic description of the terminal regime
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Stability and convergence results for Stochastic MPC

2. Convergence of average performance

lim
k→∞

1

k

k∑
j=1

E{x>j Qxj + u>j Ruj} ≤ Lss

An alternative notion of convergence of Stochastic MPC via
asymptotic average performance

Results in conservative bounds except in special cases
(e.g. if uk converges to certainty equivalent optimal feedback)
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Stability and convergence results for Stochastic MPC

3. Input to state stability (ISS)

The origin of xk+1 = f(xk, wk) is ISS with region of attraction X ⊆ Rnx

if xk ∈ X for all k, all x0 ∈ X and all w ∈ W, and

‖xk‖ ≤ β(‖x0‖, k) + γ(sup
t<k
{‖wt‖})

where β is a KL-function and γ is a K-function

Lemma: ISS [Jiang & Wang, 2001]

The origin of xk+1 = f(xk, wk) is ISS with region of attraction X ⊆ Rnx

if X contains the origin in its interior and is robustly invariant, and a
continuous function V : X→ R+ (called an ISS-Lyapunov function)
exists satisfying, for all x ∈ X and w ∈ W,

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖)
V
(
f(x,w)

)
− V (x) ≤ −α3(‖x‖) + σ(‖w‖)

where α1, α2, α3 are K∞-functions and σ is a K-function
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Stability and convergence results for Stochastic MPC

ISS implies:

– the origin is asymptotically stable for xk+1 = f(xk, 0)

– all state trajectories are bounded since W is bounded

– all trajectories converge to the origin as k →∞ if wk → 0

. . . but it doesn’t provide

non-conservative ultimate bounds on x

a probabilistic description of the terminal regime
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Stability and convergence results for Stochastic MPC

Observation: many Stochastic MPC analyses give qualitative
stability/convergence results but do not characterize asymptotic
behaviour exactly

Goal: general conditions characterizing exact asymptotic behavior under
Stochastic MPC

Tools: (i) results on convergence of Markov chains
(ii) ISS properties of controlled systems
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Convergence for ISS systems

Definition (Markov chain)

Consider a measurable space (X,B(X)) and a stochastic process
x := {xk ∈ X}k∈N defined on (Ω,F), where F is a σ-algebra on
Ω := Π∞i=0Xi, and Xi = X for all i. Then x is a time-homogenous
Markov chain with transition probability function

P (x,A) := P{xk+1 ∈ A : xk = x}
if the distribution of x satisfies the Markov property

P{xk+1 ∈ A : xj = x̄j , j ∈ Nk} = P (x̄k,A)

Definition (Invariant measure)

For the Markov chain x an invariant probability measure is a stationary
distribution, i.e. a probability measure π satisfying

π(A) =

∫
π(dx)P (x,A), ∀A ∈ B(X)
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Convergence for ISS systems

Markov chain convergence results [e.g. Meyn and Tweedie, 2005]:

Let x be a ϕ-irreducible Markov chain with state space X ⊆ Rnx

such that

(i) x is generated by xk+1 = f(xk, wk), for some continuous
f : X×W → X and a stochastic disturbance {wk ∈ W}k∈N

(ii) x is aperiodic

(iii) supp(ϕ) has non-empty interior

(iv) there is a measurable function V : X→ [0,∞) such that for any
c <∞ the set CV (c) := {y : V (y) ≤ c} is compact, and there is a
compact set C satisfying for all xk ∈ X:

E{V (xk+1)} − V (xk) ≤ −1 + b1C(xk)
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Convergence for ISS systems

Markov chain convergence results [e.g. Meyn and Tweedie, 2005]:

then

Theorem (Markov chain convergence)

An invariant probability measure π(·) exists satisfying

lim
k→∞

sup
A∈B(X)

|P k(x,A)− π(A)| = 0

where P k(x,A) := P{xk ∈ A : x0 = x}, and the Law of Large Numbers:

lim
k→∞

1

k

k∑
j=1

h(xj)
a.s.
= Eπ{h(x)}

holds for any h : X→ R such that Eπ{|h(x)|} <∞
where Eπ

{
h(x)

}
:=
∫
π(dx)h(x)
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Convergence for ISS systems

We apply these results to systems of the form

xk+1 = f(xk, wk) := g(xk) +Dwk,

with xk ∈ X, wk ∈ W and g : X→ X continuous with g(0) = 0

Assumption 1. (Disturbance distribution)

The disturbance sequence {wk ∈ W}k∈N is i.i.d., with E{wk} = 0 and a
non-singular probability distribution such that

P{‖w‖ ≤ λ} > 0 ∀λ > 0
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Convergence for ISS systems

Suppose there is a linear terminal mode of operation to which we want to
prove convergence

Assumption 2. (Linear terminal mode)

There exists a bounded set Xf ⊆ X containing the origin in its interior,
such that for all x ∈ Xf ,

(i) f(x,w) ∈ Xf for all w ∈ W
(ii) f(x,w) = Ax+Dw for all x ∈ Xf , where A is Schur stable

and (A,D) is controllable

Then the linear terminal dynamics define a transition probability function
P (x, ·) and an invariant probability measure π(·), where

π is the probability measure of
∑∞
k=0A

kDwk

the support of π is the minimal invariant set X∞ =
⊕∞

k=0A
kDW

11



Convergence for ISS systems

Assumption 3. (ISS)

The system xk+1 = g(xk) +Dwk has an ISS-Lyapunov function

Clearly this implies that the origin is ISS, but it does not directly
guarantee convergence to the terminal mode of operation

The ISS property can be coupled with the stochastic nature of the
disturbance sequence to prove convergence to Xf
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Convergence for ISS systems: main result

Under Assumptions 1-3, the Markov chain convergence results imply:

Theorem

The system xk+1 = g(xk) +Dwk satisfies

lim
k→∞

sup
A∈B(X)

|P k(x,A)− π(A)| = 0

where π(·) is the invariant probability measure associated with the
terminal linear dynamics and P k(x,A) := P{xk ∈ A : x0 = x}, and

lim
k→∞

1

k

k∑
j=1

h(xj)
a.s.
= Eπ{h(x)}

holds for any h : X→ R such that Eπ{|h(x)|} <∞
where Eπ

{
h(x)

}
:=
∫
π(dx)h(x)
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Convergence for ISS systems: main result

This implies convergence to the minimal invariant set X∞ =

∞⊕
k=0

AkDW

Corollary

The system xk+1 = g(xk) +Dwk satisfies

lim
k→∞

P{xk ∈ X∞} = 1.
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Convergence for Stochastic MPC

Interpretation

– the system converges to the minimal Robust Positively Invariant
(mRPI) set

– average performance converges to that of the terminal linear mode

These results can be applied to many Stochastic MPC algorithms
We consider two formulations:

1. Affine in the disturbance SMPC
P. Goulart and E. Kerrigan, Input-to-state stability of robust receding

horizon control with an expected value cost, Automatica, 2008

2. Striped affine in the disturbance SMPC
B. Kouvaritakis, M. Cannon, and D. Muñoz-Carpintero, Efficient

prediction strategies for disturbance compensation in stochastic MPC,

International Journal of Systems Science, 2013

15



Convergence for Stochastic MPC

Both strategies consider the system

xk+1 = Axk +Buk +Dwk

and assume that

? xk is measured at time k

? (A,B) is stabilizable

? the disturbance sequence {wk ∈ W}k∈N is i.i.d. with E{wk} = 0

? the probability distribution of wk is finitely supported in a bounded
set W containing the origin in its interior

Here we additionally assume

? P{‖w‖ ≤ λ} > 0 for all λ > 0
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Example 1: Affine in the disturbance Stochastic MPC

B State and control constraints:

(xk, uk) ∈ Z ∀k
Z ⊂ Rnx × Rnu is a convex compact set with 0 ∈ int(Z)

B The predicted control sequence at time k is parameterized as

ui|k = vi|k +

i−1∑
j=0

Mi,jwj|k, i ∈ NN−1

where vi|k and Mi,j are optimization variables at time k, and

ui|k = Kxi|k, i ≥ N
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Example 1: Affine in the disturbance Stochastic MPC

B MPC cost function:

J = E
{
x>N |kPxN |k +

N−1∑
i=0

(
x>i|kQxi|k + u>i|kRui|k

)}
,

with Q � 0, R � 0, P � 0 and (A,Q1/2) assumed detectable,
where P and K satisfy the algebraic Riccati equation

P = Q+A>PA−K>(R+B>PB)K

K = −(R+B>PB)−1B>PA

B A terminal constraint is included in the optimal control problem:

xN |k ∈ Xf ,

where Xf is a robust positively invariant set under u = Kx

18



Example 1: Affine in the disturbance Stochastic MPC

Optimal control problem solved at each instant k:

min
uk,xk,θk

J

subject to xi+1|k = Axi|k +Bui|k +Dwi|k

ui|k = vi|k +

i−1∑
j=0

Mi,jwj|k

(xi|k, ui|k) ∈ Z

x0|k = xk, xN |k ∈ Xf

∀wi|k ∈ W, ∀i ∈ NN−1

where θk =
(
{vi|k}i∈NN−1

, {Mi,j}j∈NN−1,i∈{1,...,N−1}
)
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Example 1: Affine in the disturbance Stochastic MPC

Goulart & Kerrigan (2008) prove that the origin is ISS, but no
further results on convergence to the terminal mode

Wang et al. (2008) prove convergence to the mRPI set by redefining
the cost and control policy

Under the assumptions that

{
(A+BK,D) is controllable
P{‖w‖ ≤ λ} > 0 for all λ > 0

}
we have:

Theorem
For any feasible initial state, x0 ∈ X, the closed loop system satisfies

lim
k→∞

P{xk ∈ X∞} = 1

and

lim
k→∞

1

k

k∑
j=1

(x>j Qxj + u>j Ruj)
a.s.
= lim

k→∞
E
{
ξ>k (Q+K>RK)ξk

}
where ξk+1 = (A+BK)ξk +Dwk with ξ0 = x0
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Example 2: Striped affine in the disturbance SMPC

B States and controls are subject to probabilistic constraints

P{f>xk+1 + g>uk ≤ 1} ≥ p,

where g ∈ Rnx , f ∈ Rnu , p ∈ (0, 1].

B Predicted control inputs have the structure:

ui|k = Kxi|k + ci|k +

i−1∑
j=1

Ljwi−j|k, i ∈ NN−1

ui|k = Kxi|k +

N−1∑
j=1

Ljwi−j|k, i ≥ N

where ci|k are optimization variables and A+BK is Schur stable

Lj are computed offline by minimizing constraint tightening
parameters bounding the effects of disturbances on constraints
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Example 2: Striped affine in the disturbance SMPC

B MPC cost function:

J = E
{ ∞∑
i=0

(
x>i|kQxi|k + u>i|kRui|k − Lss

)}
where Q,R � 0, K satisfies the algebraic Riccati equation

P = Q+A>PA−K>(R+B>PB)K

K = −(R+B>PB)−1B>PA

and

Lss = lim
i→∞

E{x>i|kQxi|k + u>i|kRui|k}
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Example 2: Striped affine in the disturbance SMPC

Optimal control problem solved at each instant k:

min
uk,xk,ck

J

subject to xi+1|k = Axi|k +Bui|k +Dwi|k

ui|k = ci|k +Kxi|k +

i−1∑
j=1

Ljwi−j|k

P{f>xi+1|k + g>ui|k ≤ 1} ≥ p
x0|k = xk

∀wi|k ∈ W, ∀i ∈ NN+N2−1

with N2 is chosen large enough to ensure constraint satisfaction over an
infinite prediction horizon

23



Example 2: Striped affine in the disturbance SMPC

B The optimal value function satisfies (Kouvaritakis et al, 2013):

E{Vk+1} − Vk ≤ −(x>k Qxk + u>k Ruk) + Lss

where Lss = lss + E{w>L>P̃cLw},

lss = lim
k→∞

E
{
ξ>k (Q+K>RK)ξk

}
with ξk+1 = (A+BK)ξk +Dwk and ξ0 = x0.

B This implies

lim
k→∞

1

k

k∑
j=1

E{x>j Qxj + u>j Ruj} ≤ Lss.

However, the state converges to the mRPI set X∞ and

lim
k→∞

1

k

k∑
j=1

(x>j Qxj + u>j Ruj) = lss

which is the asymptotic performance under uk = Kxk.
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Example 2: Striped affine in the disturbance SMPC

Under the assumptions that

{
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Concluding Remarks

B Generalized analysis of Stochastic MPC convergence:

? Markov chain convergence results determine asymptotic behaviour of
control laws that result in linear dynamics on an RPI terminal set

? Average closed loop performance converges to that of the linear
dynamics on the terminal set

? These results are obtained using an ISS property, but the limit
directly implied by the ISS Lyapunov inequality yields a worse bound

B The paper illustrates the convergence analysis by applying it to two
Stochastic MPC strategies

B Future work: remove condition on controllability of (A,D)
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