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Motivation

Adaptive MPC paradigm:
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Applications

is updated in parallel and sufficient threads are available. The
dense matrix inversions associated with the  and ⇣ updates
can be computed offline as they do not include any decision
variables, so only dense matrix-vector multiplications are
required, and the computational complexity of each iteration
is therefore O(N2). Additionally, the updates for  and ⇣
consist of multiplications by Toeplitz matrices that can be
implemented as (stable) linear filtering operations with a
storage requirement of O(N).

IV. NUMERICAL STUDIES

The performance of the ADMM algorithm was investi-
gated through simulation in comparison with both a CDCS
strategy and an approximately optimal DP implementation
(the algorithm of [16] was not included as the lack of hard
limits on state of charge mean that it cannot be compared in
any meaningful way). For both optimization-based strategies
it was assumed that the future driver behaviour was known
with complete precision. A simple CDCS strategy was as-
sumed where the engine was switched off and all power was
delivered from the motor until the lower state constraint was
violated, after which the engine was permanently switched
on, and used to provide all of the positive demand power
whenever the state of charge was below its lower constraint.
The DP algorithm was modified from that presented in [14]
to include the engine switching control variable and engine
switching cost, with the state of charge discretised to 0.1%
intervals and the battery power control input discretised to
1% intervals. The values ⇢1 = 8.86 ⇥ 10�9 and ⇢2 =
2.34 ⇥ 10�4 were taken from [14], and we set ⇢3 = ⇢2.
Also, ⇢4 was set at 2⇥103 after using a parameter sweep
similar to that detailed in [14]. The termination threshold, ✏,
was set at 7⇥ 104 for both the initial convex phase and the
subsequent nonconvex phase of the ADMM algorithm, and
kd was set arbitrarily at 104.

The velocity and road gradient data used to generate the
power demand profiles is shown in Figure 3. This is real
drive-test data taken from 49 instances of a single ⇠13km
route driven by four different drivers. The method detailed in
section II was used to obtain the demand power for this data,
where it was assumed that the mechanical brake provided
none of the braking power. The vehicle was modelled as
a 1800kg passenger vehicle with a 100kW petrol internal
combustion engine, a 50kW electric motor, and a 21.5Ah
lithium-ion battery with a 350V and 0.1⌦ open circuit
voltage and resistance. The battery was initialised at 60%
and constrained to between 40% and 70% to ensure that the
state constraints were strongly active at the solution. The
simulations were programmed in Matlab on a 2.6GHz Intel
Core i7-6700HQ CPU.

A. Results

Figure 4 shows the cumulative fuel consumption, state of
charge trajectory, and engine switching control inputs for a
single instance of the journey. It can be seen that although
the state of charge (SOC) trajectories for DP and ADMM
are qualitatively similar, the trajectory for CDCS has a large

Fig. 3. Velocity and gradient data against distance.

Fig. 4. Cumulative fuel consumption, SOC trajectory, and engine state for
a single journey using CDCS, DP and ADMM.

deviation for the first 430s, and this is reflected in the sub-
optimal fuel consumption. After 430s the SOC trajectories
are almost identical because the car is descending for the
majority of the second half of the journey (see the gradient
plots in Figure 3), and is therefore in a regenerative mode
for all three methods. During this period, the optimization-
based methods consume no fuel as the engine has been
switched off, but the CDCS strategy continues to consume
fuel due to the rotation of the engine. It can also be seen
from the engine controls that the ADMM algorithm largely
obtains the periods where it is optimal to turn the engine on
and off (e.g determines that the engine should be off while
descending), but introduces additional switching decisions,
particularly around 100s and 400s.

The first plot in Figure 5 shows the total fuel consumed
across all journeys using CDCS, DP, and ADMM. To prop-
erly compare the fuel consumption using each method, the
equivalent fuel consumption as a result of battery use is
normally also considered within the total energy consump-
tion, but in this case the second plot shows that the terminal
SOC was within 1.7% in all cases for all three methods,
so this effect was ignored. It can be seen that DP reduces
fuel consumption w.r.t CDCS by ⇠40% in all cases, and that

CONFIDENTIAL. Limited circulation. For review only

IEEE L-CSS submission 19-0063.2 (Submission for L-CSS and CDC)

.

Preprint Received May 2, 2019 10:04:22 PST

Uncertain parameters, uncertain demand

Networks of interacting locally controlled systems

3



Overview

An idea with a long history: e.g. self-tuning control, DMC, GPC . . .
[Clarke, Tuffs, Mohtadi, 1987]

Revisited with new tools:

Set membership estimation
[Bai, Cho, Tempo, 1998]

Robust tube MPC
[Langson, Chryssochoos, Rakovic, Mayne, 2004]

Dual adaptive/predictive control
[Lee & Lee, 2009]

4



Overview

Recent work on MPC with model adaptation

Online learning & identification:

– Persistence of excitation constraints
[Marafioti, Bitmead, Hovd, 2014]

– RLS parameter estimation with covariance matrix in cost
[Heirung, Ydstie, Foss, 2017]

– Gaussian process regression, particle filtering
[Klenske, Zeilinger, Scholkopf, Hennig, 2016]

[Bayard & Schumitzky, 2010]

Robust constraint satisfaction and performance:

– Constraints based on prior uncertainty set, online update of cost only
[Aswani, Gonzalez, Sastry, Tomlin, 2013]

– Set-based identification, stable FIR plant model
[Tanaskovic, Fagiano, Smith, Morari, 2014]
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Overview

This talk:

1 Set membership parameter estimation

2 Polytopic tube robust adaptive MPC

3 Persistent excitation

4 Differentiable MPC
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Parameter set estimate

Plant model with unknown parameter vector θ? and disturbance w:

xk+1 = A(θ?)xk +B(θ?)uk + wk

Assumption 1: model is affine in unknown parameters

xk+1 = Dkθ
? + dk + wk

{
Dk = D(xk, uk)

dk = A0xk +B0uk

Assumption 2: stochastic disturbance wk ∈ W
W 3 0 is compact and convex

Unfalsified set: If xk, xk−1, uk−1 are known, then θ? ∈ ∆k

∆k = {θ : xk = Dk−1θ + dk−1 + w, w ∈ W}
7



Minimal parameter set estimate

Minimal parameter set update:

Θk+1 = Θk ∩∆k+1

Θk+1

∆k+1

Θk

Assumption 3: W is a ’tight’ bound: for all w0 ∈ ∂W and ε > 0

Pr
{
‖wk − w0‖ < ε

}
≥ pw(ε)

where pw(ε) > 0 ∀ε > 0

Assumption 4: persistent excitation: ∃ α, β > 0, N such that

‖Dk‖ ≤ α and
k+N−1∑

j=k

D>j Dj � βI for all k

8



Minimal parameter set estimate

Unfalsified set: ∆k+1 = {θ : xk+1 −Dkθ − dk ∈ W}
= {θ : Dk(θ∗ − θ) + wk ∈ W}

For any given θ0 ∈ Θk:

pick w0 ∈ ∂W so that
Dk(θ∗ − θ0) is normal to ∂W
at w0

let ε = ‖wk − w0‖

then θ0 /∈ ∆k+1 if ε < ‖Dk(θ∗ − θ0)‖

W

w0

normal at w0
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Minimal parameter set estimate

Unfalsified set: ∆k+1 = {θ : xk+1 −Dkθ − dk ∈ W}
= {θ : Dk(θ∗ − θ) + wk ∈ W}

For any given θ0 ∈ Θk:

pick w0 ∈ ∂W so that
Dk(θ∗ − θ0) is normal to ∂W
at w0

let ε = ‖wk − w0‖

then θ0 /∈ ∆k+1 if ε < ‖Dk(θ∗ − θ0)‖

W

w0

wk

Dk(θ∗ − θ0)

normal at w0

radius ε
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Minimal parameter set estimate

If Assumptions 1-4 hold, then Θk → {θ∗} as k →∞ w.p. 1

This follows from:

A For any θ0 ∈ Θk, if ‖θ∗ − θ0‖ ≥ ε, then

Pr{θ0 6∈ ∆j} ≥ pw
(
ε
√
β/N

)

for all k, all ε > 0, and some j ∈ {k + 1, . . . , k +N}

B For any θ0 ∈ Θ0 such that ‖θ0 − θ∗‖ ≥ ε,

Pr{θ0 ∈ Θk} ≤
[
1− pw

(
ε
√
β/N

)]bk/Nc

for all k and all ε > 0, so
∞∑

k=0

Pr{θ0 ∈ Θk} = 0
Borel-Cantelli

=⇒
Lemma

Pr
{
θ0 ∈

∞⋂

k=0

Θk

}
= 0
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Minimal parameter set estimate

The complexity of Θk is unbounded in general

e.g. Minimal parameter set Θk for k = 1, . . . , 6 with polytopic W and Θ0

is a direct application of Theorem 2 in Raimondo et al.
(2009). The origin is practically stable for the closed loop
system with the ultimate bound depending on the size of
the disturbance set W.

Proposition 11. Suppose Assumptions 1,2,6,10 hold. Then
the origin is practically stable with region of attraction XN

and limk!1 kxkk⌦ = 0 for the closed-loop system (1) with
MPC control law (10).

Without additive disturbance the constants in Lemma 9
vanish, c1 = c2 = 0, leading to the following corollary.

Corollary 12. Suppose Assumptions 1,2,6,10 hold and
W = {0}. Then the origin is asymptotically stable with
region of attraction XN for the closed-loop system (1) with
MPC control law (10).

4. NUMERICAL EXAMPLE

In this section, two examples are presented to illustrate the
advantages of the proposed Adaptive MPC scheme. We
first demonstrate the online identification and constraint
satisfaction in a setup where stabilization of the origin is
considered and thereafter the adaptive scheme is compared
with a non-adaptive, Robust MPC in an ad-hoc tracking
implementation for constant reference signals.

Example 1 Consider the second-order discrete-time linear
system of the form (1) with

A0 =


0.5 0.2
�0.1 0.6

�
, B0 =


0

0.5

�
,

A1 =


0.042 0
0.072 0.03

�
, A2 =


0.015 0.019
0.009 0.035

�
, A3 = 02⇥2,

{Bi}i=1,2 = 02⇥1, B3 =


0.0397
0.0539

�

⇥ = {✓ | k✓k1  1} and W = {w 2 R2 | kwk1  0.1}.

The MPC parameters were horizon length N = 9, cost
weights Q = diag(1, 1), R = 0.001, and prestabilizing
feedback gain K = [0.017 � 0.41]. Separate state and
input constraints [xk]2 � �0.3, |uk|  1 were applied to
the system which should be satisfied robustly.

Starting from an initial condition x0 = [0, 10]>, Figure 1
shows a typical closed loop trajectory, the predicted state
tube trajectory at time step k = 3 and the state constraint
[xk]2 � �0.3. Under the proposed Adaptive MPC scheme,
the state constraint is robustly satisfied for all possible
predicted states and the state converges to a neighborhood
of the origin. The input constraints were satisfied robustly
with the input saturated at uk = �1 in the first four steps.

Figure 2 shows the parameter set from time step k = 0
to k = 5. Given the realized state and input trajectory,
falsified parameters are removed and the uncertainty set
is non-increasing. We remark that the parameter adaption
depends on the initial condition and disturbance realiza-
tion since the cost does not reflect the advantage of future
parameter learning.

The simulation was performed with Matlab and MOSEK.
The average optimization time without further tuning or
warm-start was 1.5s with a maximum of 1.8s on an Intel
Core i7 with 3.4GHz.

0 0.5 1 1.5 2
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Fig. 1. Realized closed loop trajectory, predicted state tube trajec-
tory and constraint [xk]1 � �0.3.
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Fig. 2. Evolution of the parameter set from time k = 0 to k = 5.
Note the di↵erent axis limits.

Example 2 To highlight the increased performance of the
proposed Adaptive MPC scheme we compare it with a
non-adaptive robust Tube MPC. Consider a simple mass
spring damper system with dynamics described by

mẍ = �cẋ � kx + u + w

and nominal parameters mass m = 1, damping constant
c = 0.2, and spring constant k = 1. The parameter
uncertainty was considered to be ±20%, |w(t)|  0.5, and
input u and state x constrained to [�5, 5] and [�0.1, 1.1]
respectively. To apply the MPC algorithm, a first-order
discretization with sampling time Ts = 0.1 was used. The
prediction horizon was set to N = 14 and cost weights
Q = diag(10, 0.001), R = 0.001.

Figure 3 shows the closed loop response under the pro-
posed Adaptive MPC and robust Tube MPC algorithm.
After time steps k = 20, 40, 60 the desired set point was
switched between 0 and 1. Due to the model uncertainty
the desired steady state xss = 1 is only stabilized with an
o↵set which, due to the parameter adaption, is decreased
in the Adaptive MPC scheme but not in the Robust MPC.
Similarly, while each transient between the steady states
is similar in the Robust MPC, the Adaptive MPC shows a
faster, improved convergence in each transient. The closed
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Fixed complexity polytopic parameter set estimate

Define Θk = {θ : HΘθ ≤ hk} for a fixed matrix HΘ

Update Θk+1 by solving, for each row i:

[hk+1]i = max
w0∈W,..., wN−1∈W

θ∈Θk

[HΘ]iθ

subject to

xk−N+2 = Dk−N+1θ + dk−N+1 + w0

...

xk+1 = Dkθ + dk + wN−1

Θk+1

⋂k
j=k−N+1 ∆j+1

Θk

Then Θk+1 ⊆ Θk ⊆ · · · ⊆ Θ0,

and Θk+1 is the minimum volume set such that

Θk+1 ⊇ Θk ∩
k⋂

j=k−N+1

∆j+1

12



Fixed complexity polytopic parameter set estimate

If Assumptions 1-4 hold, then Θk → {θ∗} as k →∞ w.p. 1

This follows from:

A If [hk]i − [HΘ]iθ
∗ ≥ ε, then

Pr

{
{θ : [HΘ]iθ = [hk]i} ∩

k⋂

j=k−N+1

∆j+1 = ∅
}
≥
[
pw

( εβ
αN

)]N

for all i, k, and all ε > 0

B For any θ0 such that [HΘ]i(θ
0 − θ∗) ≥ ε for some row i,

Pr{θ0 ∈ Θk} ≤
{

1−
[
pw

( εβ
Nα

)]N}bk/Nc

for all k and all ε > 0, so
∞∑

k=0

Pr{θ0 ∈ Θk} = 0
Borel-Cantelli

=⇒
Lemma

Pr
{
θ0 ∈

∞⋂

k=0

Θk

}
= 0
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Example: fixed complexity parameter set estimate

Parameter set Θk at time
k ∈ {0, 1, 2; 10, 25, 50; 100, 500, 5000}

Θ set Volume Cost*

(%)

Θ0 100 62.22

Θ1 26.1 61.13

Θ2 18.3 61.03

Θ10 12.7 60.96

Θ25 8.3 60.93

Θ50 6.3 60.77

Θ100 3.4 59.45

Θ500 0.7 57.94

Θ5000 0.0089 53.95

θ? - 52.70

Volume of Θk and Cost* for same x0

14



Inexact disturbance bounds

What if W is not exactly known?

Suppose wk ∈ Ŵ for all k, for known Ŵ

Ŵ
���

W +
ρB

Assumption 5: Ŵ is compact and convex, and W ⊆ Ŵ ⊆ W ⊕ ρB
for some ρ ≥ 0, and B = {x : ‖x‖ ≤ 1}

Replace W with Ŵ in the fixed complexity polytopic parameter set update

then θ? ∈ ∆̂k+1 = {θ : xk+1 = Dkθ + dk + w, w ∈ Ŵ}, and

if Assumptions 1-5 hold, then Θk → {θ∗} ⊕ ρ
√
N/β B as k →∞ w.p. 1
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Noisy measurements

Let yk = xk + sk be an estimate of xk

Assumption 6: i.i.d. noise sk ∈ S for all k

where S 3 0 is a compact, convex polytope

Assumption 7: the noise bound is tight, i.e. for all s0 ∈ ∂S and ε > 0

Pr
{
‖sk − s0‖ < ε

}
≥ ps(ε)

where ps(ε) > 0 for all ε > 0

Then S = co{s(1), . . . , s(h)} implies θ? ∈ co{∆̂(1)
k+1, . . . , ∆̂

(h)
k+1}, where

∆̂
(j)
k+1 =

{
θ : yk+1 −D(yk − s(j), uk)θ − d(yk − s(j)

k , uk) ∈ Ŵ ⊕ S
}

If Assumptions 1-7 hold, then Θk → {θ∗} ⊕ ρ
√
N/β B as k →∞ w.p. 1
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Parameter point estimate

Define a point estimate θ̂k of θ?

θ̂k: defines a nominal predicted performance index

Θk: enforces constraints robustly

Given a parameter estimate θ̂k:

Least mean squares (LMS) filter estimate update is

θ̃k+1 = θ̂k + µD>(xk, uk)(xk+1 − x̂1|k)

θ̂k+1 = ΠΘk+1
(θ̃k+1)

where

I x̂1|k = D(xk, uk)(θ̂k)

I µ > 0 satisfies 1/µ > sup(x,u)∈Z ‖D(x, u)‖2

I ΠΘ(θ̂) = arg minθ∈Θ ‖θ − θ̂‖ projects onto Θ

For µ = 0 the update is θ̂k+1 = ΠΘk+1
(θ̂k)

17



Parameter point estimate

The LMS filter (µ > 0) ensures the l2 gain bound:

If supk∈N ‖xk‖ <∞ and supk∈N ‖uk‖ <∞, then θ̂k ∈ Θk for all k and

sup
T∈N,wk∈W,θ̂0∈Θ0

∑T
k=0 ‖x̃1|k‖2

1
µ‖θ̂0 − θ?‖2 +

∑T
k=0 ‖wk‖2

≤ 1

where x̃1|k = A(θ?)xk +B(θ?)uk − x̂1|k is the 1-step prediction error

18



Control Problem

Consider robust regulation of the system

xk+1 = A(θ)xk +B(θ)uk + wk

with θ ∈ Θk, wk ∈ W, subject to the state and control constraints

Fxk +Guk ≤ 1 = [1 · · · 1]>

Assumption (Robust stabilizability):
There exists a set X = {x : V x ≤ 1} and feedback gain K such that X is
λ-contractive for some λ ∈ [0, 1), i.e.

V Φ(θ)x ≤ λ1, for all x ∈ X , θ ∈ Θ0.

where Φ(θ) = A(θ) +B(θ)K.

19



Control Problem

State sequence predicted at time k: x1|k, x2|k, . . .

Control sequence predicted at time k: u0|k, u1|k, . . .:

ui|k =

{
Kxi|k + vi|k i = 0, 1, . . . , N − 1

Kxi|k i = N,N + 1, . . .

where v = (v0|k, . . . , vN |k) is a decision variable

Nominal predicted performance index

JN (xk, θ̂k,vk) =

N−1∑

i=0

(
‖x̂i|k‖2Q + ‖ûi|k‖2R

)
+ ‖x̂N |k‖2P

where x̂0|k = xk

ûi|k = Kx̂i|k + vi|k
x̂i+1|k = A(θ̂k)x̂i|k +B(θ̂k)ûi|k, θ̂k = nominal estimate

and P � Φ>(θ)PΦ(θ) +Q+K>RK for all θ ∈ Θk

20



Tube MPC

A sequence of sets (a “tube”) is constructed to bound the predicted state
xi|k, with ith cross section, Xi|k:

Xi|k = {x : V x ≤ αi|k}
where V is determined offline and αi|k are online decision variables

(A) For robust satisfaction of xi|k ∈ Xi|k, we require

V Φ(θ)x+ V B(θ)vi|k + w̄ ≤ αi+1|k for all x ∈ Xi|k, θ ∈ Θk

where [w̄]i = maxw∈W [V ]iw

(B) For robust satisfaction of Fxi|k +Gui|k ≤ 1, we require

(F +GK)x+Gvi|k ≤ 1 for all x ∈ Xi|k

Condition (A) is bilinear in x and θ, but can be expressed in terms of linear
inequalities using a vertex representation of either Xi|k or Θk

21



Tube MPC

We generate the vertex representation:

Xi|k = co{x1
i|k, . . . x

m
i|k}

using the fact that {x : [V ]rx ≤ [αi|k]r} is a supporting hyperplane of Xi|k

X

x1 x2

Xi|k

x1
i|k = x2

i|kHHY

Hence each vertex xji|k is defined by a fixed set of rows of V , so

xji|k = U jαi|k

where U j is determined offline from the vertices of X = {x : V x ≤ 1}

22



Tube MPC

Using the hyperplane and vertex descriptions of Xi|k, the robust tube
constraints become

A V Φ(θ)U jαi|k + V B(θ)vi|k + w̄ ≤ αi+1|k for all θ ∈ Θk, j = 1, . . . ,m

B (F +GK)U jαi|k +Gvi|k ≤ 1, j = 1, . . . ,m

Now condition (B) is linear and (A) can be equivalently written as linear
constraints using

Polyhedral set inclusion lemma
Let Pi = {x : Fix ≤ fi} ⊂ Rn for i = 1, 2. Then P1 ⊆ P2 iff

∃Λ ≥ 0 such that ΛF1 = F2 and Λf1 ≤ f2

23



Robust MPC online optimization problem

Summary of constraints in the online MPC optimization at time k:

V xk ≤ α0|k

Λji|kHΘ = V D(U jαi|k,KU
jαi|k + vi|k)

Λji|khk ≤ αi+1|k − V d(ujαi|k,KU
jαi|k + vi|k)− w̄

Λji|k ≥ 0

(F +GK)U jαi|k +Gvi|k ≤ 1

ΛjN|kHΘ = V D(U jαN|k,KU
jαN|k)

ΛjN|khk ≤ αN|k − V d(ujαN|k,KU
jαN|k)− w̄

ΛjN|k ≥ 0

(F +GK)U jαN|k ≤ 1
for i = 0, . . . , N − 1, j = 1, . . . ,m

Let F(xk,Θk) be the feasible set for the decision variables vk,αk,Λk

24



Robust adaptive MPC algorithm

Offline: Choose Θ0, X , feedback gain K, and compute P

Online, at each time k = 1, 2, . . .:

1 Given xk, update Θk and θ̂k

2 Compute the solution (v∗k,α
∗
k,Λ

∗
k) of the QP:

min
vk,αk,Λk

J(xk, θ̂k,vk)

subject to (vk,αk,Λk) ∈ F(xk,Θk)

3 Apply the control law u∗k = Kxk + v∗0|k

25



Robust adaptive MPC algorithm

The MPC algorithm has the following closed loop properties:

If θ? ∈ Θ0 and F(x0,Θ0) 6= ∅, then for all k > 0:

1 θ? ∈ Θk

2 F(xk,Θk) 6= ∅
3 Fxk +Guk ≤ 1

If µ > 0, then

4 the closed loop system is finite-gain l2-stable, i.e.

T∑

k=0

‖xk‖2 ≤ c0‖x0‖2 + c1‖θ̂0 − θ?‖2 + c2

T∑

k=0

‖wk‖2

for some constants c0, c1, c2 > 0, for all T > 0
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Robust adaptive MPC algorithm

The MPC algorithm has the following closed loop properties:

If θ? ∈ Θ0 and F(x0,Θ0) 6= ∅, then for all k > 0:

1 θ? ∈ Θk

2 F(xk,Θk) 6= ∅
3 Fxk +Guk ≤ 1

If µ = 0, then

4 the closed loop system is input-to-state stable (ISS)

‖xT ‖ ≤ η(‖x0‖, T ) + ζ(‖θ̂0 − θ∗‖) + ψ( max
k∈{0,...,T−1}

‖wk‖)

for some KL-function η, some K-functions ψ, ζ and all k, T .
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Regulation example

Linear system with

(A(θ), B(θ)) = (A0, B0) +

3∑

i=1

(Ai, Bi)θi

A0 =

[
0.5 0.2
−0.1 0.6

]
A1 =

[
0.042 0
0.072 0.03

]
A2 =

[
0.015 0.019
0.009 0.035

]
A3 = 02×2

B0 =

[
0
0.5

]
B1 = 02×1 B2 = 02×1 B3 =

[
0.0397
0.059

]

B true parameter θ? = [0.8 0.2 −0.5]>, initial set Θ0 = {θ : ‖θ‖∞ ≤ 1}.

B disturbance uniformly distributed on W = {w ∈ R2 : ‖w‖∞ ≤ 0.1}

B state and input constraints: [x]2 ≥ −0.3, u ≤ 1.
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Regulation example: constraint satisfaction

red: Closed loop trajectory from initial condition x0 = (3, 6)
blue: Predicted state tube at time k = 0
pink: Terminal set
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Tracking example
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Figure 3. Parameter membership set at time steps
k 2 0, 5, 25, 70, 120, 500.

Example 2 To highlight the increased performance of
the proposed adaptive MPC scheme, we compare it with
a non-adaptive robust Tube MPC. Consider a simple
mass spring damper system with dynamics described by

mÿ = �cẏ � ky + kuu + w

and nominal parameters mass m = 1, damping con-
stant c = 0.2, spring constant k = 1, and input gain
ku = 1. The parameter uncertainty for the coe�cients
c
m , k

m , and ku

m was considered to be ±20%, the distur-
bance |w(t)|  0.5, and input force u and position y were
constrained to [�5, 5] and [�0.1, 1.1] respectively. To ap-
ply the MPC algorithm, a state-space formulation and
first-order discretization with sampling time Ts = 0.1
was used. The prediction horizon was set to N = 14 and
cost weights to Q = diag(10, 0.001), R = 0.001.

Figure 4 shows the closed-loop response under the pro-
posed MPC scheme with and without parameter adap-
tion. At time steps k = 10, 30, 50, 70 the desired setpoint
was switched between 0 and 1. While, as expected, up to
k = 10 the response to the first setpoint change is sim-
ilar for the adaptive and robust MPC, for the adaptive
MPC it becomes more aggressive in the subsequent set-
point changes as the model uncertainty decreases. Sim-
ilarly, while each transient between the steady states is
identical in the robust MPC, the adaptive MPC shows a
faster, improved convergence at each setpoint change. In
particular, the MPC scheme with parameter estimation
is able to reach the desired steady state within 10 time
steps, whereas the robust MPC does not converge to
the desired steady state before the subsequent set-point
change. The root-mean-square tracking error of the ro-
bust MPC was 0.20 compared to 0.14 for the adaptive
MPC, i.e. 43% higher.

0 20 40 60 80

0

0.5

1

time step k

y
k

adaptive MPC

robust MPC

Figure 4. Comparison of closed-loop trajectories with set-
point changing between 0 and 1 at k = 10, 30, 50, 70 for the
proposed MPC with recursive model update (solid blue) and
a non-adaptive robust MPC (dashed red).

6 Conclusions

A computationally tractable model predictive control al-
gorithm with recursive parameter update has been pre-
sented which provides guarantees for closed-loop stabil-
ity and robust constraint satisfaction. The requirements
for stability and constraint satisfaction are considered
separately. This leads to a set-membership parameter
estimation scheme being employed to derive bounds on
the state and input predictions whereas a Least Mean
Squares filter is used to achieve a finite gain from the
disturbance to the state. The online optimization to be
solved is a linearly constrained quadratic program and
proven to be recursively feasible. Two numerical exam-
ples are provided to demonstrate the e↵ectiveness of the
proposed algorithm.

Extensions for time-varying parameters and for PE re-
gressors are discussed explicitly. As the MPC scheme
is formulated in a modern state-space framework, the
proposed setup provides a solid framework for adaptive
MPC algorithms and can be easily combined with fur-
ther results tailored to specific control objectives, e.g.
tracking or output feedback MPC.

Compared to classical adaptive control literature, the
assumptions made are necessarily more restrictive in or-
der to allow a robust MPC formulation. The use of less
restrictive assumptions in combination with soft con-
straints are currently under investigation. Questions on
optimal excitation of the system as discussed in [10] re-
main open for future research.
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Closed loop setpoint tracking with and without model updates
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Time-varying parameters

Assumption (time-varying parameters)

There exists a constant rθ such that the parameter vector θ?k satisfies
θ?k ∈ Θ0 for all k and ‖θ?k+1 − θ?k‖ ≤ rθ

Define the dilation operator:

Rk(Θ) = {θ : HΘθ ≤ h+ krθ1}
Then the minimal parameter set at k + 1 is

Θk+1 = R1(Θk ∩∆k+1) ∩Θ0

and Θk is replaced in the tube MPC constraints by

Θi|k = Ri(Θk) ∩Θ0

30



Robust adaptive MPC algorithm with time-varying
parameters

Parameter estimate bounds and recursive feasibility properties are unchanged:

Theorem (Closed loop properties)

If θ? ∈ Θ0 and F(x0,Θ0) 6= ∅, then for all k > 0:

1 θ? ∈ Θk

2 F(xk,Θk) 6= ∅
3 Fxk +Guk ≤ 1

But the LMS filter has an additional tracking error, which invalidates the
l2-stability properties, i.e. “certainty equivalence” no longer applies
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Time-varying parameters example
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Figure 4. Parameter membership set for the sys-
tem with time-varying parameters at time steps
k 2 {0, 100, 200, 300, 400, 500}.

creases conservatism and can increase performance. Yet,
due to the number of equality constraints in the MPC
optimization program, a significant increase in compu-
tation time was observed with increasing complexity
of X0. Furthermore, note that the scalar input allows
the decomposition of the PE input constraint into two
linear constraints, leading to two convex QP problems
to be solved and compared in each MPC iteration [24].

6 Conclusions

A computationally tractable model predictive control al-
gorithm with recursive parameter update has been pre-
sented that provides guarantees for closed-loop stability
and robust constraint satisfaction. The requirements for
stability and constraint satisfaction are considered sep-
arately. This leads to a set-membership parameter es-
timation scheme being employed to derive bounds on
the state and input predictions whereas a Least Mean
Squares filter is used to achieve a finite gain from the
disturbance to the state. The online optimization to be
solved is a linearly constrained quadratic program and
proven to be recursively feasible. Two numerical exam-
ples are provided to demonstrate the e↵ectiveness of the
proposed algorithm.

Extensions for time-varying parameters and for PE re-
gressors are discussed explicitly. As the MPC scheme
is formulated in a modern state-space framework, the
proposed setup provides a solid framework for adaptive
MPC algorithms and can be easily combined with fur-
ther results tailored to specific control objectives, e.g.,
tracking or output feedback MPC.

Compared to the classical adaptive control literature,
the assumptions made are necessarily more restrictive
in order to allow a robust MPC formulation. The use

of less restrictive assumptions in combination with soft
constraints or chance constraints are currently under in-
vestigation. In particular for the time-varying case, it
would furthermore be of interest to derive bounds on
the estimation error, which could then be used to relax
Assumptions 8 and 11 to a parameter dependent presta-
bilizing feedback and terminal constraint. Finally, ques-
tions on optimal excitation of the system as discussed
in [12] remain open for future research.

A Appendix

A.1 Computation of the terminal region

As shown in [8] and [29], a terminal set Xf satisfying As-
sumption 11 can be computed recursively by the follow-
ing algorithm. With X0 and f̄ as given above, i.e., X0 =
{x 2 Rn | Hxx  1} and [f̄ ]i = maxx2X0

[F +GK]ix, let

X0
f = {(z,↵) 2 Rn ⇥ R�0 | (F + GK)z + ↵f̄  1}

and define

Xi+1
f =

8
><
>:

(z,↵)

�����

9(z+,↵+) 2 Xi
f s. t.

Acl(✓)({z} � ↵X0) � W
✓ {z+} � ↵+X0 8✓ 2 ⇥

9
>=
>;

\ X0
f .

(A.1)
The sets Xi

f , i 2 N are non-increasing with i and the
terminal set is given by the limit for i ! 1. Under the
given assumptions, the sequence converges in finite time
such that Xf = Xi

f for some i 2 N satisfying Xi
f = Xi+1

f .

With {✓k}k2Nvp
1

being the vertices of the set ⇥, [h̄k
x]i =

maxx2X0
[Hx]iAcl(✓

k)x, and

X̃i+1
f =

8
><
>:

(z,↵, z+,↵+) |
Hx

⇥
Acl(✓

k)z � z+
⇤
+ h̄k

x↵+ 1↵+  �w̄

8k 2 Nvp

1

9
>=
>;

,

the recursion (A.1) can be computed by Xi+1
f =

Projn+1(X̃
i+1
f ) where Projn+1 is the projection onto the

first n + 1 coordinates.

As the projection of polytopes can be computationally
demanding, the recursion can be simplified through set-
ting z = z+ = 0 and determining only a suitable ↵ sat-
isfying Assumption 11.

A.2 Proof of Lemma 24

PROOF. [Lemma 24] Let xk be the solution of (1) with
wk ⌘ 0. By [14, Corollary 2.4] {uk}k being PE implies

13

Parameter set Θk at time k ∈ {0, 100, 200, 300, 400, 500} for time-varying
system with rθ = 0.01
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Time-varying parameters example

for all possible predicted states and the state converges
to a neighborhood of the origin. Similarly, the input con-
straints (not plotted) are satisfied for all k 2 N.

�0.5 0 0.5 1 1.5 2

0

1

2

3

[xk]1

[x
k
] 2

Figure 1. Realized closed-loop trajectory from initial condi-
tion x0 = [2 3]>, predicted state tube at time k = 0, and
constraint [xk]2 � �0.3.

To highlight the parameter estimation, the PE condi-
tion as described in Section 4.2 has been implemented,
following [24], via an additional constraint on the input

P�1X

l=0

uk�lu
>
k�l ⌫ ↵I (29)

with P = n + 1 and ↵ = 2. Starting from an initial con-
dition x0 = [0 0]>, the closed loop exhibits a persistently
exciting regressor, with the typical cyclic state and in-
put (Figure 2). Due to the state constraint, the center
of the trajectory path is shifted to the positive orthant,
such that the closed-loop state trajectory does not vio-
late the constraint [xk]2 � �0.3. As predicted by Propo-
sition 23, the parameter membership set converges to a
singleton (Figure 3). Given the realized state and input
trajectory, falsified parameters are removed and the un-
certainty set is non-increasing.

Finally, to demonstrate the capability of handling time-
varying systems, in the following, the problem setup has
been changed to a time-varying parameter ✓⇤k with ✓⇤0 =
✓⇤ and a bound on the variation of k✓⇤k+1 � ✓⇤kk  0.01.
In the simulation, the parameter has been taken to be a
periodic deterministic function in time. Each parameter
is increased/decreased linearly by 0.01p

3
, i.e.

[✓⇤k+1]i = [✓⇤k]i ± 0.01p
3

,

where the sign is changed upon hitting the boundary of
⇥. As above, the simulation has been initialized with

�0.2 0 0.2 0.4
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0.5

[xk]1

[x
k
] 2

0 20 40 60 80 100
�1

�0.5
0

0.5
1

time step k

in
p
u
t

u
k

Figure 2. Closed-loop state and input trajectory with en-
forced PE input (solid line), state and input constraints
(dashed line).
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Figure 3. Parameter membership set at time steps
k 2 {0, 5, 25, 70, 120, 500}.

x0 = [0 0]> and the additional PE constraint (29). Fig-
ure 4 shows the estimated parameter set at sampling
times k = 1, 100, 200, 300, 400 and 500. Instead of
convergence to a singleton as in Figure 3, the parameter
set varies in position, shape, and size.

The simulations were performed in Matlab with Yalmip
for setting up the optimization program, which was
solved using MOSEK. The median solver time (with PE
constraint) reported by Yalmip was 0.068s (0.10s) with a
maximum of 0.095s (0.19s) and minimum of 0.05s on an
Intel Core i7 with 3.4GHz. Choosing X0, i.e. the shape
of the tube cross sections, to be the minimal robustly
forward invariant set under the local control law de-

12

Parameter set Θk at time k ∈ {0, 5, 25, 70, 120, 500} for time-invariant system
for comparison
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Persistent excitation

PE condition evaluated over a future horizon is nonconvex in ui|k, xi|k:

(PE):

Np−1∑

i=0

D>(xi|k, ui|k)D(xi|k, ui|k) � βI

Linearise:

? let (x, u) = (x̄, ū) + (x̌, ǔ) where x̄0|k = xk and

ūi|k = Kx̄i|k + v∗i+1|k−1

x̄i+1|k = A(θ̂k)x̄i|k +B(θ̂k)ūi|k

? then D = D̄ + Ď, where D̄ = D(x̄, ū), Ď = D(x̌, ǔ)

D>D = Ď>D̄ + D̄>Ď + D̄>D̄ + Ď>Ď

� Ď>D̄ + D̄>Ď + D̄>D̄

? so Ď>D̄ + D̄>Ď + D̄>D̄ � βI =⇒ D>D � βI
33
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Persistent excitation

B A sufficient condition for

Np−1∑

i=0

D>i|kDi|k � βI is

(PE-LMI):

Np−1∑

i=0

(
Ď>i|kD̄i|k + D̄>i|kĎi|k + D̄>i|kD̄i|k

)
� βI.

B This can be expressed in terms of

x̌i|k ∈ Xi|k − {x̄i|k}
ǔi|k ∈ K(Xi|k − {x̄i|k}) + {vi|k} − {v∗i+1|k−1}

using

Ďi|k ∈ co
{
D
(
U jαi|k − x̄i|k,K(U jαi|k − x̄i|k) + vi|k − v∗i+1|k−1

)}

Hence (PE-LMI) is equivalent to an LMI in variables vk,αk, β
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Robust adaptive multiobjective MPC algorithm

Offline: Choose Θ0, X , γ, Np, K, and compute P

Online, at each time k = 1, 2, . . .:

1 Given xk, update set (Θk) and point (θ̂k) parameter estimates, and
compute x̄i|k, ūi|k, i = 0, . . . , N − 1

2 Compute the solution (v∗k,α
∗
k,Λ

∗
k) of the semidefinite program

min
vk,αk,Λk,β

J(xk, θ̂k,vk)− γβ

subject to (vk,αk,Λk) ∈ F(xk,Θk) and (PE-LMI)

3 Apply the control law u∗k = Kxk + v∗0|k

How to choose γ? Stability? Closed loop PE?
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Robust adaptive MPC algorithm with PE

Let D(x,Kx) =
∑p
j=1 Φj [θ]jx, where Φj = Aj +BjK j = 1, . . . , p

The terminal feedback law u = Kx is on average PE if

(a). σ
(
[vec(Φ1) · · · vec(Φp)]

)
= σK > 0

(b). E{ww>} � εwI

Here (a) ⇒
∥∥[vec(Φ1) · · · vec(Φp)]θ

∥∥ ≥ σK‖θ‖
(b) ⇒ E{xx>} � εwI

so that

θ>
Np−1∑

i=0

E{D(xi,Kxi)
>D(xi,Kxi)}θ ≥ εwσ2

K‖θ‖2

=⇒
κ+Np−1∑

i=κ

E{D>i|kDi|k} � εwσ2
K ∀κ ≥ N
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Robust adaptive MPC algorithm with PE

Impose PE conditions on predictions in a chain of windows:

(PE-LMI):

κ+Np−1∑

i=κ

(
Ď>i|kD̄i|k + D̄>i|kĎi|k + D̄>i|kD̄i|k

)
� β̂κ|kI

for κ = −Np + 1, . . . , 0, . . . , N

-�

-�

futurepast

ui|k = Kxi|k + vi|k ui|k = Kxi|k

PE window

· · ·

prediction time step, i

0−Np+1 · · · · · · Np−1 · · · N−1N · · · N+Np−1
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Robust adaptive MPC algorithm with PE

Offline: Choose Θ0, X , Np, K, and compute P

Online, at each time k = 1, 2, . . .:

1 Given xk, update Θk, θ̂k and compute x̄i|k, ūi|k, i = 0, . . . , N +Np − 1

2 Compute β̂κ|k := min
xκ∈Xκ|k−1

max
β̂

β̂ s.t. (PE-LMI) and vi|k = v∗i+1|k−1 ∀i
for κ = −Np + 1, . . . , 0, . . . , N

3 Compute the solution (v∗k,α
∗
k,Λ

∗
k,β

∗
k) of the semidefinite program

min
vk,αk,Λk,βk

J(xk, θ̂k,vk)

subject to (vk,αk,Λk) ∈ F(xk,Θk) and (PE-LMI)

4 Apply the control law u∗k = Kxk + v∗0|k
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Robust adaptive MPC algorithm with PE

Closed loop PE condition

At time t

At time t+ 1

β∗N|t

β∗N−1|t+1

0|t6 N +Np − 1|t6

0|t+ 1
6

N +Np − 2|t+ 1
6

βt+N = β∗−Np+1|t+N+Np−1 ≥ · · · ≥ β∗N−1|t+1 ≥ β∗N |t
⇓

E{βt+N} ≥ · · · ≥ E{β∗N |t} ≥ εwσ2
K
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Robust adaptive MPC algorithm with PE

Closed loop PE condition

At time t

At time t+ 1

At time t+N +Np − 1

β∗N|t

β∗N−1|t+1

βt+N

0|t6 N +Np − 1|t6

0|t+ 1
6

N +Np − 2|t+ 1
6

0|t+N +Np − 1
6

βt+N = β∗−Np+1|t+N+Np−1 ≥ · · · ≥ β∗N−1|t+1 ≥ β∗N |t
⇓

E{βt+N} ≥ · · · ≥ E{β∗N |t} ≥ εwσ2
K
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Robust adaptive MPC algorithm with PE

Closed loop properties:

If θ? ∈ Θ0 and F(x0,Θ0) 6= ∅, then for all k > 0:

1 θ? ∈ Θk

2 F(xk,Θk) 6= ∅
3 Fxk +Guk ≤ 1

4 The system xk+1 = A(θ?)xk +B(θ?)u∗k + wk is ISS

5

Np−1∑

i=0

E
{
D(xk+i, uk+i)

>D(xk+i, uk+i)
}
� εwσ2

KI
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Robust adaptive MPC algorithm with PE
Example with N = 25, Np = 3 [Marafioti, Bitmead, Hovd, 2014]

Mean and range of βt for 30 disturbance sequences

blue: with PE constraints
red: without PE constraints
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Robust adaptive MPC algorithm with PE
Example with N = 25, Np = 3 [Marafioti, Bitmead, Hovd, 2014]

Mean and range of βt for 30 disturbance sequences

blue: with PE constraints
red: without PE constraints
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Robust adaptive MPC algorithm with PE

Convergence of parameter set estimate, vol(Θt)

blue: with PE constraints
red: without PE constraints
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Robust adaptive MPC algorithm with PE

Convergence and computation for N = 25, Np = 3

Volume % Mean βt CPU time
Θ10 Θ100 Θ500 step 2 step 3

with PE 25.4 2.67 0.26 4.9× 10−5 0.958 0.073

without PE 25.3 5.77 4.22 9.0× 10−10 – 0.052
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Differentiable MPC

MPC law: uN (xk, θ̂k,Θk) is the solution of a multiparametric
programming problem

Differentiable MPC uses the gradient ∇θ̂uN (·) to train a neural network

(NN) with weights θ̂k via back-propagation

Update θ̂k with MPC optimization embedded in a NN layer;
retain parameter set estimate Θk for safe constraint handling
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Differentiable MPC: learning model parameters

Linearly parameterised system model:
xk+1 = f(xk, uk, θ

∗) + wk

f(xk, uk, θ) = Dkθ + dk

{
Dk = D(xk, uk)

dk = d(xk, uk)

Parameter set estimate:
Θk+1 ⊇ Θk ∩∆k+1

∆k+1 = {θ : xk+1 −Dkθ − dk ∈ W}

Imitation learning problem: identify θ∗ by observing an expert controller

Train θ̂k to minimize a loss function

1

T

k∑

t=k−T+1

(
‖ut − uN (xt, θk,Θk)‖2 + σ‖ŵt‖2

)

where
ut = {ut, . . . , ut+N−1} = observed expert control sequence

uN (xt, θ̂k,Θk) = {u0|t, . . . , uN−1|t} = MPC law for an initial state xt
ŵt = xt+1 − f(xk, uk, θ̂k) = 1-step ahead error
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Differentiable MPC: learning model parameters

Problem: Regulate (y, ẏ) subject to bounds on y
Prior assumptions: 2nd order LTI model

m

ky

cẏ - y

�uUnder review as a conference paper at ICLR 2020
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Figure 1: Imitation loss and model loss at each iteration of the training process. Top row:
imitation loss. Bottom row: model loss given by kvecA� vecAjk2

2, where Aj is the learned model at
iteration j, and A is the correct model. Note that the model loss was not used as part of the training
process, and shown only to indicate whether the model is converging correctly.

Learning The learner and expert shared all system and controller information apart from the state
transition matrix A, which was learned, and the MPC horizon length, which was implemented as
each of N 2 {2, 3, 6} in three separate experiments. A was initialized with the correct state transition
matrix plus a uniformly distributed pseudo-random perturbation in the interval [�0.5, 0.5] added to
each element. The learner was supplied with the first 50 elements of the closed loop state trajectory
and corresponding controls as a batch of inputs, and was trained to minimize the imitation loss (6)
with � = 0, i.e. the state dynamics were learned using predicted control trajectories only, and the state
transitions are not made available to the learner (this is the same approach used in Amos et al., 2018).
The experiments were implemented in Pytorch 1.2.0 using the built-in Adam optimizer (Kingma &
Ba, 2014) for 1000 steps using default parameters. The MPC optimization problems were solved
for the ‘expert’ and ‘learner’ using OSQP with settings (eps_ abs=1E-10, eps_ rel=1E-10,
eps_rim_inf=1E-10, eps_dual_inf=1E-10).

Training Results Figure 1 shows the imitation and model loss at each of the 1000 optimization
iterations for each of the tested horizon lengths. It can be seen that all of the generated systems
are ‘trainable’ for all MPC horizon lengths, in the sense that the imitation loss converges to a low
value, although the imitation loss converges to a local minimum in general. In most cases, the learned
model converges to a close approximation of the real model, although as the problem is non-convex
this cannot be guaranteed, and it is also shown that there are some cases in which the model does
not converge correctly. This occurred exclusively for N = 2, where neither system 4 nor system 2
converge to the correct dynamics. Additionally, it can be seen that both the imitation loss and model
loss converge faster as the prediction horizon is increased. This suggests that a longer learning horizon
improves the learning capabilities of the methods, but there is not sufficient data to demonstrate this
relationship conclusively.

Testing Results To test generalization performance, each of the systems was re-initialized with
initial condition x0 = (0.5, 2) and simulated in closed loop using the learned controller for each

7

Training results for varying damping c & horizon N
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horizon length. The results are compared in Figure 2 against the same systems controlled with an
infinite horizon MPC controller. The primary observation is that as the learned MPC horizon is
increased to N = 6, the closed loop trajectories converge to expert trajectories, indicating that the
infinite horizon cost has been learned (when using the infinite horizon cost with no model mismatch
or disturbance, the predicted MPC trajectory is exactly the same as the closed loop trajectory), and
that the state constraints are guaranteed for N � 4. Furthermore, it can be seen that the learned
controllers are stabilizing, even for the shortest horizon and the most unstable open-loop systems.
This is also the case for systems 2 and 4 where the incorrect dynamics were learned, although in this
case the state constraints are not guaranteed for N = 2.

0 20 40
t

�1

0

1

x
1

N = 2

0 20 40
t

�1

0

1

N = 4

0 20 40
t

�1

0

1

N = 6

1 2 3 4 5 6 7

Figure 2: Closed-loop trajectories using the expert and learned controllers. Trajectories only
shown for x1 (i.e. position), but x2 (i.e. velocity) can be inferred. Expert controllers shown with
solid lines, and learned controller shown with dotted lines. The hard constraints on state are shown in
the red regions.

Limitations The major theoretical limitation of the above approach is the restriction to LTI systems.
A more comprehensive solution would cover linear time varying systems (for which the MPC is
still obtained from the solution of a QP), however in this case the infinite horizon cost cannot be
obtained from the solution of the DARE, and the extension of the methods presented in this paper
to time varying or non-linear models is non-trivial (see Appendix E for further discussion). There
are also implementation issues with the proposed algorithm. The derivative of the DARE presented
in Proposition 2 involves multiple Kronecker products and matrix inversions (including an n2 ⇥ n2

matrix inversion) that do not scale well to large state vectors, although the dynamics of physical
systems can usually be reasonably approximated with only a handful of state variables, so this may
not become an issue in practice. The algorithm also relies on the existence of a stabilizing solution to
the DARE. Theories for the existence of stabilizing solutions of the DARE are non-trivial (e.g. Ran
& Vreugdenhil, 1988), and it is not immediately obvious how to enforce their existence throughout
the training process (stabilizibility can be encouraged using the one-step ahead term in 6).

5 CONCLUSION

This work presented a method to differentiate through an infinite-horizon linear quadratic MPC,
where the solution of the DARE was used to compute a terminal cost from the MPC optimization
problem. The final control sequence is obtained from the solution of a QP that is structured so that its
always both well-conditioned and feasible, and the whole forward pass is end-to-end differentiable,
so can be included as a layer in a neural network architecture. The approach was demonstrated on an
set of imitation learning experiments for a family of ‘expert’ controlled second-order systems with
different stability properties. In particular, it is shown that a short prediction horizon can be found
such that the resulting MPC is stable and infinite-horizon optimal.

8

Closed-loop responses: expert (solid lines), learned controllers (dots)

Implementation issues:

? nonconvexity and non-uniqueness of optimal parameters

? gradient information can vanish or explode across a prediction horizon

? expert controller may not be persistently exciting
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Platoon problem:

y1 y2 yn

regulate y1, . . . yn a so that ẏi+1 − ẏi → 0 subject to yi+1 − yi ≥ y
a ≤ ÿi ≤ b

Prior assumptions:

System model (ÿi = ui) is known

y, a, b are known

Unknown MPC cost to be learnt from observations of an expert controller
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n = 10 vehicles =⇒ x ∈ R18, u ∈ R10

Cost weights Q, R initialized as random diagonal matrices

500 training iterations:
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Figure 4: Vehicle platooning. Imitation loss and cost
function loss at each iteration of the training process.
Left: imitation loss. Right: model loss given by kvecQ �
vecQjk2

2 + kvecR � vecRjk2
2, where Q and R are the

correct cost matrices and Qj and Rj are the cost matrices
at iteration j.

Figure 5 shows the model simulated from
the same initial condition in closed loop
using a learned controller for each of the
horizon lengths, together with the error
between the MPC state predictions and
ensuing closed-loop behaviour. All of the
controllers are observed to successfully
satisfy the hard constraints on vehicle
separation, and all converge to the cor-
rect steady-state vehicle separation. The
differences between the prediction capa-
bilities of the controllers is highlighted
by the state prediction errors, and it can
be seen that for N = 20 the state pre-
dictions match the ensuing behaviour, in-
dicating that the infinite horizon cost is
being used and that closed-loop stability
is guaranteed, even without the use of a
terminal constraint set. It is also demonstrated for N < 20 that the largest errors occur from predic-
tions made at times when the state constraints are active, suggesting that these controllers deviate
from their predictions to satisfy the constraints at later intervals.

4.3 LIMITATIONS

The above approach is limited in scope to LTI systems, and a more comprehensive solution would
cover linear time varying systems (for which the MPC is still obtained from the solution of a QP).
In this case the infinite horizon cost cannot be obtained from the solution of the DARE, and the
extension of the methods presented in this paper to time varying or non-linear models is non-trivial
(see Appendix G for further discussion). The derivative of the DARE in Proposition 2 involves
multiple Kronecker products and matrix inversions (including an n2 ⇥ n2 matrix) that do not scale
well to large state and control dimensions, although the dynamics of physical systems can usually
be reasonably approximated with only a few tens of variables, so this may not become an issue
in practice. The algorithm also requires a stabilizing solution of the DARE to exist; theories for
the existence of stabilizing solutions are non-trivial (e.g. Ran & Vreugdenhil, 1988), and it is not
immediately obvious how to enforce their existence throughout the training process (stabilizibility
can be encouraged using the one-step ahead term in (6)).
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Figure 5: Vehicle platooning. Closed loop simulation and prediction error for all horizon
lengths. Top row: closed loop simulation where each shaded region is the safe separation dis-
tance for each vehicle. Bottom row: prediction error given by kx[t:t+N ] � x̂tk2

2, where x̂ is the state
trajectory predicted by the MPC at time t.
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2, where Q and R are the

correct cost matrices and Qj and Rj are the cost matrices
at iteration j.

Figure 5 shows the model simulated from
the same initial condition in closed loop
using a learned controller for each of the
horizon lengths, together with the error
between the MPC state predictions and
ensuing closed-loop behaviour. All of the
controllers are observed to successfully
satisfy the hard constraints on vehicle
separation, and all converge to the cor-
rect steady-state vehicle separation. The
differences between the prediction capa-
bilities of the controllers is highlighted
by the state prediction errors, and it can
be seen that for N = 20 the state pre-
dictions match the ensuing behaviour, in-
dicating that the infinite horizon cost is
being used and that closed-loop stability
is guaranteed, even without the use of a
terminal constraint set. It is also demonstrated for N < 20 that the largest errors occur from predic-
tions made at times when the state constraints are active, suggesting that these controllers deviate
from their predictions to satisfy the constraints at later intervals.

4.3 LIMITATIONS

The above approach is limited in scope to LTI systems, and a more comprehensive solution would
cover linear time varying systems (for which the MPC is still obtained from the solution of a QP).
In this case the infinite horizon cost cannot be obtained from the solution of the DARE, and the
extension of the methods presented in this paper to time varying or non-linear models is non-trivial
(see Appendix G for further discussion). The derivative of the DARE in Proposition 2 involves
multiple Kronecker products and matrix inversions (including an n2 ⇥ n2 matrix) that do not scale
well to large state and control dimensions, although the dynamics of physical systems can usually
be reasonably approximated with only a few tens of variables, so this may not become an issue
in practice. The algorithm also requires a stabilizing solution of the DARE to exist; theories for
the existence of stabilizing solutions are non-trivial (e.g. Ran & Vreugdenhil, 1988), and it is not
immediately obvious how to enforce their existence throughout the training process (stabilizibility
can be encouraged using the one-step ahead term in (6)).
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lengths. Top row: closed loop simulation where each shaded region is the safe separation dis-
tance for each vehicle. Bottom row: prediction error given by kx[t:t+N ] � x̂tk2

2, where x̂ is the state
trajectory predicted by the MPC at time t.

8

Performance of learnt MPC with horizons N = 5, 10, 15, 20:

– constraints yi+1 − yi ≥ y = 30 m are satisfied

– approximately constrained LQ-optimal for N = 20
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Conclusions

Adaptive robust MPC is computationally tractable

Set-membership parameter estimation and robust tube MPC

Closed loop stability (ISS) and parameter convergence (PE)

Future work

Can we relax the assumption of bounded disturbances?

How to combine PE conditions and RNN model adaptation?
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