Robust Adaptive Model Predictive Control

Mark Cannon

Department of Engineering Science, Oxford University

November 25, 2020

Motivation

Robust MPC paradigm:

- Uncertain model & disturbances affect performance
- Large effort (time & money) spent on model identification offline

Motivation

Adaptive MPC paradigm:

- Identify (or learn) model (or cost or constraints) online
- Require: robust constraint satisfaction closed loop stability & performance guarantees parameter convergence

Applications

- Uncertain parameters, uncertain demand
- Networks of interacting locally controlled systems

Overview

An idea with a long history: e.g. self-tuning control, DMC, GPC . . . [Clarke, Tuffs, Mohtadi, 1987]

Revisited with new tools:

• Set membership estimation

[Bai, Cho, Tempo, 1998]

• Robust tube MPC

[Langson, Chryssochoos, Rakovic, Mayne, 2004]

• Dual adaptive/predictive control

[Lee & Lee, 2009]

Overview

Recent work on MPC with model adaptation

- Online learning & identification:
 - Persistence of excitation constraints

[Marafioti, Bitmead, Hovd, 2014]

- RLS parameter estimation with covariance matrix in cost

[Heirung, Ydstie, Foss, 2017]

- Gaussian process regression, particle filtering

[Klenske, Zeilinger, Scholkopf, Hennig, 2016] [Bayard & Schumitzky, 2010]

- Robust constraint satisfaction and performance:
 - Constraints based on prior uncertainty set, online update of cost only

[Aswani, Gonzalez, Sastry, Tomlin, 2013]

- Set-based identification, stable FIR plant model

[Tanaskovic, Fagiano, Smith, Morari, 2014]

Overview

This talk:

- Set membership parameter estimation
- Polytopic tube robust adaptive MPC
- Persistent excitation
- Oifferentiable MPC

Parameter set estimate

Plant model with unknown parameter vector θ^{\star} and disturbance w:

$$x_{k+1} = A(\theta^*)x_k + B(\theta^*)u_k + w_k$$

Assumption 1: model is affine in unknown parameters

$$x_{k+1} = D_k \theta^* + d_k + w_k \qquad \begin{cases} D_k = D(x_k, u_k) \\ d_k = A_0 x_k + B_0 u_k \end{cases}$$

Assumption 2: stochastic disturbance $w_k \in W$ $W \ni 0$ is compact and convex

 $\begin{array}{ll} \text{Unfalsified set:} & \text{If } x_k, x_{k-1}, u_{k-1} \text{ are known, then } \theta^\star \in \Delta_k \\ & \Delta_k = \{\theta : x_k = D_{k-1}\theta + d_{k-1} + w, \ w \in \mathcal{W} \} \end{array}$

Minimal parameter set update:

 $\Theta_{k+1} = \Theta_k \cap \Delta_{k+1}$

Assumption 3: \mathcal{W} is a 'tight' bound: for all $w^0 \in \partial \mathcal{W}$ and $\epsilon > 0$ $\Pr\{\|w_k - w^0\| < \epsilon\} \ge p_w(\epsilon)$ where $p_w(\epsilon) > 0 \ \forall \epsilon > 0$

Assumption 4: persistent excitation: $\exists \alpha, \beta > 0, N$ such that $\|D_k\| \le \alpha$ and $\sum_{j=k}^{k+N-1} D_j^\top D_j \succeq \beta I$ for all k

If Assumptions 1-4 hold, then $\Theta_k \to \{\theta^*\}$ as $k \to \infty$ w.p. 1

This follows from:

• For any
$$\theta^0 \in \Theta_k$$
, if $\|\theta^* - \theta^0\| \ge \epsilon$, then
 $\Pr\{\theta^0 \notin \Delta_j\} \ge p_w(\epsilon \sqrt{\beta/N})$
for all k , all $\epsilon > 0$, and some $j \in \{k + 1, \dots, k + N\}$

• For any
$$\theta^0 \in \Theta_0$$
 such that $\|\theta^0 - \theta^*\| \ge \epsilon$,
 $\Pr\{\theta^0 \in \Theta_k\} \le \left[1 - p_w(\epsilon \sqrt{\beta/N})\right]^{\lfloor k/N \rfloor}$

for all k and all $\epsilon > 0$, so

$$\sum_{k=0}^{\infty} \Pr\{\theta^0 \in \Theta_k\} = 0 \xrightarrow[\text{Lemma}]{\text{Borel-Cantelli}} \Pr\{\theta^0 \in \bigcap_{k=0}^{\infty} \Theta_k\} = 0$$

The complexity of Θ_k is unbounded in general

e.g. Minimal parameter set Θ_k for $k = 1, \ldots, 6$ with polytopic \mathcal{W} and Θ_0

Fixed complexity polytopic parameter set estimate

• Define $\Theta_k = \{\theta : H_{\Theta}\theta \le h_k\}$ for a fixed matrix H_{Θ}

• Update
$$\Theta_{k+1}$$
 by solving, for each row *i*:

$$[h_{k+1}]_i = \max_{\substack{w_0 \in \mathcal{W}, \dots, w_{N-1} \in \mathcal{W} \\ \theta \in \Theta_k}} [H_{\Theta}]_i \theta$$
subject to

$$x_{k-N+2} = D_{k-N+1}\theta + d_{k-N+1} + w_0$$

$$\vdots$$

$$x_{k+1} = D_k\theta + d_k + w_{N-1}$$

• Then $\Theta_{k+1} \subseteq \Theta_k \subseteq \cdots \subseteq \Theta_0$, and Θ_{k+1} is the minimum volume set such that

$$\Theta_{k+1} \supseteq \Theta_k \cap \bigcap_{j=k-N+1}^k \Delta_{j+1}$$

Fixed complexity polytopic parameter set estimate

If Assumptions 1-4 hold, then $\Theta_k \to \{\theta^*\}$ as $k \to \infty$ w.p. 1

This follows from:

• If $[h_k]_i - [H_{\Theta}]_i \theta^* \ge \epsilon$, then $\Pr\left\{\{\theta : [H_{\Theta}]_i \theta = [h_k]_i\} \cap \bigcap_{j=k-N+1}^k \Delta_{j+1} = \emptyset\right\} \ge \left[p_w\left(\frac{\epsilon\beta}{\alpha N}\right)\right]^N$ for all i, k, and all $\epsilon > 0$

So For any θ^0 such that $[H_{\Theta}]_i(\theta^0 - \theta^*) \ge \epsilon$ for some row i,

$$\Pr\{\theta^0 \in \Theta_k\} \le \left\{1 - \left[p_w\left(\frac{\epsilon\beta}{N\alpha}\right)\right]^N\right\}^{\lfloor k/N \rfloor}$$

for all k and all $\epsilon > 0$, so

$$\sum_{k=0}^{\infty} \Pr\{\theta^0 \in \Theta_k\} = 0 \xrightarrow[\text{Lemma}]{\text{Borel-Cantelli}} \Pr\{\theta^0 \in \bigcap_{k=0}^{\infty} \Theta_k\} = 0$$

Example: fixed complexity parameter set estimate

Θ set	Volume	Cost*	
	(%)		
Θ_0	100	62.22	
Θ_1	26.1	61.13	
Θ_2	18.3	61.03	
Θ_{10}	12.7	60.96	
Θ_{25}	8.3	60.93	
Θ_{50}	6.3	60.77	
Θ_{100}	3.4	59.45	
Θ_{500}	0.7	57.94	
Θ_{5000}	0.0089	53.95	
θ^{\star}	-	52.70	

Parameter set Θ_k at time $k \in \{0, 1, 2; 10, 25, 50; 100, 500, 5000\}$

Volume of Θ_k and Cost* for same x_0

Inexact disturbance bounds

What if \mathcal{W} is not exactly known? Suppose $w_k \in \widehat{\mathcal{W}}$ for all k, for known $\widehat{\mathcal{W}}$

Assumption 5: $\widehat{\mathcal{W}}$ is compact and convex, and $\mathcal{W} \subseteq \widehat{\mathcal{W}} \subseteq \mathcal{W} \oplus \rho \mathcal{B}$ for some $\rho \ge 0$, and $\mathcal{B} = \{x : ||x|| \le 1\}$

Replace \mathcal{W} with $\widehat{\mathcal{W}}$ in the fixed complexity polytopic parameter set update then $\theta^* \in \widehat{\Delta}_{k+1} = \{\theta : x_{k+1} = D_k \theta + d_k + w, \ w \in \widehat{\mathcal{W}}\}$, and

if Assumptions 1-5 hold, then $\Theta_k o\{ heta^*\}\oplus
ho\sqrt{N/eta}\,\mathcal{B}$ as $k o\infty$ w.p. 1

Inexact disturbance bounds

What if \mathcal{W} is not exactly known? Suppose $w_k \in \widehat{\mathcal{W}}$ for all k, for known $\widehat{\mathcal{W}}$

Assumption 5: $\widehat{\mathcal{W}}$ is compact and convex, and $\mathcal{W} \subseteq \widehat{\mathcal{W}} \subseteq \mathcal{W} \oplus \rho \mathcal{B}$ for some $\rho \ge 0$, and $\mathcal{B} = \{x : ||x|| \le 1\}$

Replace \mathcal{W} with $\widehat{\mathcal{W}}$ in the fixed complexity polytopic parameter set update then $\theta^{\star} \in \widehat{\Delta}_{k+1} = \{\theta : x_{k+1} = D_k \theta + d_k + w, \ w \in \widehat{\mathcal{W}}\}$, and

if Assumptions 1-5 hold, then $\Theta_k \to \{\theta^*\} \oplus \rho \sqrt{N/\beta} \mathcal{B}$ as $k \to \infty$ w.p. 1

Noisy measurements

Let $y_k = x_k + s_k$ be an estimate of x_k

Assumption 6: i.i.d. noise $s_k \in S$ for all kwhere $S \ni 0$ is a compact, convex polytope

Assumption 7: the noise bound is tight, i.e. for all $s^0 \in \partial S$ and $\epsilon > 0$ $\Pr\{\|s_k - s^0\| < \epsilon\} \ge p_s(\epsilon)$ where $p_s(\epsilon) > 0$ for all $\epsilon > 0$

Then
$$\mathcal{S} = \operatorname{co}\{s^{(1)}, \dots, s^{(h)}\}$$
 implies $\theta^* \in \operatorname{co}\{\widehat{\Delta}_{k+1}^{(1)}, \dots, \widehat{\Delta}_{k+1}^{(h)}\}$, where
 $\widehat{\Delta}_{k+1}^{(j)} = \left\{\theta : y_{k+1} - D(y_k - s^{(j)}, u_k)\theta - d(y_k - s_k^{(j)}, u_k) \in \widehat{\mathcal{W}} \oplus \mathcal{S}\right\}$

If Assumptions 1-7 hold, then $\Theta_k \to \{\theta^*\} \oplus \rho \sqrt{N/\beta} \mathcal{B}$ as $k \to \infty$ w.p. 1

Parameter point estimate

Define a point estimate $\hat{\theta}_k$ of θ^\star

- $\hat{\theta}_k$: defines a nominal predicted performance index
- Θ_k : enforces constraints robustly

Given a parameter estimate $\hat{\theta}_k$:

• Least mean squares (LMS) filter estimate update is

$$\begin{split} \tilde{\theta}_{k+1} &= \hat{\theta}_k + \mu D^\top (x_k, u_k) (x_{k+1} - \hat{x}_{1|k}) \\ \hat{\theta}_{k+1} &= \Pi_{\Theta_{k+1}} (\tilde{\theta}_{k+1}) \end{split}$$

where

$$\hat{x}_{1|k} = D(x_k, u_k)(\hat{\theta}_k)$$

- $\blacktriangleright \ \mu > 0 \text{ satisfies } 1/\mu > \sup_{(x,u) \in \mathcal{Z}} \|D(x,u)\|^2$
- $\Pi_{\Theta}(\hat{\theta}) = \arg \min_{\theta \in \Theta} \|\theta \hat{\theta}\|$ projects onto Θ

• For
$$\mu = 0$$
 the update is $\hat{\theta}_{k+1} = \Pi_{\Theta_{k+1}}(\hat{\theta}_k)$

Parameter point estimate

The LMS filter ($\mu > 0$) ensures the l^2 gain bound:

If $\sup_{k\in\mathbb{N}} \|x_k\| < \infty$ and $\sup_{k\in\mathbb{N}} \|u_k\| < \infty$, then $\hat{\theta}_k \in \Theta_k$ for all k and

$$\sup_{T \in \mathbb{N}, w_k \in \mathcal{W}, \hat{\theta}_0 \in \Theta_0} \frac{\sum_{k=0}^T \|\tilde{x}_{1|k}\|^2}{\frac{1}{\mu} \|\hat{\theta}_0 - \theta^\star\|^2 + \sum_{k=0}^T \|w_k\|^2} \le 1$$

where $\tilde{x}_{1|k} = A(\theta^{\star})x_k + B(\theta^{\star})u_k - \hat{x}_{1|k}$ is the 1-step prediction error

Control Problem

Consider robust regulation of the system

$$x_{k+1} = A(\theta)x_k + B(\theta)u_k + w_k$$

with $\theta \in \Theta_k$, $w_k \in \mathcal{W}$, subject to the state and control constraints

$$Fx_k + Gu_k \leq \mathbf{1} = \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}^\top$$

Assumption (Robust stabilizability):

There exists a set $\mathcal{X} = \{x : Vx \leq 1\}$ and feedback gain K such that \mathcal{X} is λ -contractive for some $\lambda \in [0, 1)$, i.e.

$$V\Phi(\theta)x \leq \lambda \mathbf{1}$$
, for all $x \in \mathcal{X}, \theta \in \Theta_0$.

where $\Phi(\theta) = A(\theta) + B(\theta)K$.

Control Problem

- State sequence predicted at time k: $x_{1|k}, x_{2|k}, \ldots$
- Control sequence predicted at time k: $u_{0|k}, u_{1|k}, \ldots$:

$$u_{i|k} = \begin{cases} Kx_{i|k} + v_{i|k} & i = 0, 1, \dots, N-1 \\ Kx_{i|k} & i = N, N+1, \dots \end{cases}$$

where $\mathbf{v} = (v_{0|k}, \ldots, v_{N|k})$ is a decision variable

Nominal predicted performance index

$$J_N(x_k, \hat{\theta}_k, \mathbf{v}_k) = \sum_{i=0}^{N-1} \left(\|\hat{x}_{i|k}\|_Q^2 + \|\hat{u}_{i|k}\|_R^2 \right) + \|\hat{x}_{N|k}\|_P^2$$

where $\hat{x}_{0|k} = x_k$ $\hat{u}_{i|k} = K\hat{x}_{i|k} + v_{i|k}$ $\hat{x}_{i+1|k} = A(\hat{\theta}_k)\hat{x}_{i|k} + B(\hat{\theta}_k)\hat{u}_{i|k}, \quad \hat{\theta}_k = \text{nominal estimate}$ and $P \succeq \Phi^{\top}(\theta)P\Phi(\theta) + Q + K^{\top}RK$ for all $\theta \in \Theta_k$

Tube MPC

A sequence of sets (a "tube") is constructed to bound the predicted state $x_{i|k}$, with *i*th cross section, $\mathcal{X}_{i|k}$:

$$\mathcal{X}_{i|k} = \{x : Vx \le \alpha_{i|k}\}$$

where V is determined offline and $\alpha_{i|k}$ are online decision variables

(A) For robust satisfaction of
$$x_{i|k} \in \mathcal{X}_{i|k}$$
, we require
 $V\Phi(\theta)x + VB(\theta)v_{i|k} + \bar{w} \leq \alpha_{i+1|k}$ for all $x \in \mathcal{X}_{i|k}$, $\theta \in \Theta_k$
where $[\bar{w}]_i = \max_{w \in \mathcal{W}} [V]_i w$

(B) For robust satisfaction of
$$Fx_{i|k} + Gu_{i|k} \leq 1$$
, we require
 $(F + GK)x + Gv_{i|k} \leq 1$ for all $x \in \mathcal{X}_{i|k}$

Condition (A) is bilinear in x and θ , but can be expressed in terms of linear inequalities using a vertex representation of either $\mathcal{X}_{i|k}$ or Θ_k

Tube MPC

We generate the vertex representation:

$$\mathcal{X}_{i|k} = \operatorname{co}\{x_{i|k}^1, \dots x_{i|k}^m\}$$

using the fact that $\{x: [V]_r x \leq [\alpha_{i|k}]_r\}$ is a supporting hyperplane of $\mathcal{X}_{i|k}$

Hence each vertex $x_{i|k}^{j}$ is defined by a fixed set of rows of V, so

$$x_{i|k}^j = U^j \alpha_{i|k}$$

where U^j is determined offline from the vertices of $\mathcal{X} = \{x: Vx \leq \mathbf{1}\}$

Tube MPC

Using the hyperplane and vertex descriptions of $\mathcal{X}_{i|k}$, the robust tube constraints become

- **6** $(F + GK)U^{j}\alpha_{i|k} + Gv_{i|k} \le 1, j = 1, \dots, m$

Now condition (B) is linear and (A) can be equivalently written as linear constraints using

Polyhedral set inclusion lemma Let $\mathcal{P}_i = \{x : F_i x \leq f_i\} \subset \mathbb{R}^n$ for i = 1, 2. Then $\mathcal{P}_1 \subseteq \mathcal{P}_2$ iff $\exists \Lambda \geq 0$ such that $\Lambda F_1 = F_2$ and $\Lambda f_1 \leq f_2$

Robust MPC online optimization problem

Summary of constraints in the online MPC optimization at time k:

$$\begin{aligned} Vx_k &\leq \alpha_{0|k} \\ \Lambda^j_{i|k} H_{\Theta} &= VD(U^j \alpha_{i|k}, KU^j \alpha_{i|k} + v_{i|k}) \\ \Lambda^j_{i|k} h_k &\leq \alpha_{i+1|k} - Vd(u^j \alpha_{i|k}, KU^j \alpha_{i|k} + v_{i|k}) - \bar{w} \\ \Lambda^j_{i|k} &\geq 0 \\ (F + GK)U^j \alpha_{i|k} + Gv_{i|k} &\leq \mathbf{1} \\ \Lambda^j_{N|k} H_{\Theta} &= VD(U^j \alpha_{N|k}, KU^j \alpha_{N|k}) \\ \Lambda^j_{N|k} h_k &\leq \alpha_{N|k} - Vd(u^j \alpha_{N|k}, KU^j \alpha_{N|k}) - \bar{w} \\ \Lambda^j_{N|k} &\geq 0 \\ (F + GK)U^j \alpha_{N|k} &\leq \mathbf{1} \\ & \text{for } i = 0, \dots, N - 1, \ j = 1, \dots, m \end{aligned}$$

Let $\mathcal{F}(x_k,\Theta_k)$ be the feasible set for the decision variables $\mathbf{v}_k, \mathbf{\alpha}_k, \mathbf{\Lambda}_k$

Robust adaptive MPC algorithm

Offline: Choose Θ_0 , \mathcal{X} , feedback gain K, and compute P

Online, at each time $k = 1, 2, \ldots$:

1 Given x_k , update Θ_k and $\hat{\theta}_k$

2 Compute the solution $(\mathbf{v}_k^*, \boldsymbol{\alpha}_k^*, \boldsymbol{\Lambda}_k^*)$ of the QP:

$$\begin{split} & \min_{\mathbf{v}_k, \boldsymbol{\alpha}_k, \boldsymbol{\Lambda}_k} J(x_k, \hat{\theta}_k, \mathbf{v}_k) \\ \text{subject to } (\mathbf{v}_k, \boldsymbol{\alpha}_k, \boldsymbol{\Lambda}_k) \in \mathcal{F}(x_k, \Theta_k) \end{split}$$

3 Apply the control law $u_k^* = Kx_k + v_{0|k}^*$

Robust adaptive MPC algorithm

The MPC algorithm has the following closed loop properties:

If
$$\theta^* \in \Theta_0$$
 and $\mathcal{F}(x_0, \Theta_0) \neq \emptyset$, then for all $k > 0$:
• $\theta^* \in \Theta_k$
• $\mathcal{F}(x_k, \Theta_k) \neq \emptyset$
• $Fx_k + Gu_k \leq 1$

If $\mu > 0$, then

• the closed loop system is finite-gain l^2 -stable, i.e.

$$\sum_{k=0}^{T} \|x_k\|^2 \le c_0 \|x_0\|^2 + c_1 \|\hat{\theta}_0 - \theta^\star\|^2 + c_2 \sum_{k=0}^{T} \|w_k\|^2$$

for some constants $c_0, c_1, c_2 > 0$, for all T > 0

Robust adaptive MPC algorithm

The MPC algorithm has the following closed loop properties:

If
$$\theta^* \in \Theta_0$$
 and $\mathcal{F}(x_0, \Theta_0) \neq \emptyset$, then for all $k > 0$:
• $\theta^* \in \Theta_k$
• $\mathcal{F}(x_k, \Theta_k) \neq \emptyset$
• $Fx_k + Gu_k \leq 1$

If $\mu = 0$, then • the closed loop system is input-to-state stable (ISS) $\|x_T\| \le \eta(\|x_0\|, T) + \zeta(\|\hat{\theta}_0 - \theta^*\|) + \psi(\max_{k \in \{0, \dots, T-1\}} \|w_k\|)$ for some \mathcal{KL} -function η , some \mathcal{K} -functions ψ , ζ and all k, T.

Regulation example

Linear system with

$$(A(\theta), B(\theta)) = (A_0, B_0) + \sum_{i=1}^3 (A_i, B_i)\theta_i$$
$$A_0 = \begin{bmatrix} 0.5 & 0.2 \\ -0.1 & 0.6 \end{bmatrix} \quad A_1 = \begin{bmatrix} 0.042 & 0 \\ 0.072 & 0.03 \end{bmatrix} \quad A_2 = \begin{bmatrix} 0.015 & 0.019 \\ 0.009 & 0.035 \end{bmatrix} \quad A_3 = 0_{2\times 2}$$
$$B_0 = \begin{bmatrix} 0 \\ 0.5 \end{bmatrix} \qquad B_1 = 0_{2\times 1} \qquad B_2 = 0_{2\times 1} \qquad B_3 = \begin{bmatrix} 0.0397 \\ 0.059 \end{bmatrix}$$

 $\vartriangleright \text{ true parameter } \theta^{\star} = [0.8 \quad 0.2 \quad -0.5]^{\top} \text{, initial set } \Theta_0 = \{\theta : \|\theta\|_{\infty} \leq 1\}.$

 \vartriangleright disturbance uniformly distributed on $\mathcal{W}=\{w\in\mathbb{R}^2:~\|w\|_\infty\leq 0.1\}$

 \triangleright state and input constraints: $[x]_2 \ge -0.3$, $u \le 1$.

Regulation example: constraint satisfaction

red: Closed loop trajectory from initial condition $x_0 = (3, 6)$ blue: Predicted state tube at time k = 0pink: Terminal set

Tracking example

Closed loop setpoint tracking with and without model updates

Time-varying parameters

Assumption (time-varying parameters)

There exists a constant r_{θ} such that the parameter vector θ_k^{\star} satisfies $\theta_k^{\star} \in \Theta_0$ for all k and $\|\theta_{k+1}^{\star} - \theta_k^{\star}\| \leq r_{\theta}$

Define the dilation operator:

$$R_k(\Theta) = \{\theta : H_\Theta \theta \le h + kr_\theta \mathbf{1}\}\$$

Then the minimal parameter set at k+1 is

$$\Theta_{k+1} = R_1(\Theta_k \cap \Delta_{k+1}) \cap \Theta_0$$

and Θ_k is replaced in the tube MPC constraints by

$$\Theta_{i|k} = R_i(\Theta_k) \cap \Theta_0$$

Robust adaptive MPC algorithm with time-varying parameters

Parameter estimate bounds and recursive feasibility properties are unchanged:

Theorem (Closed loop properties) If $\theta^* \in \Theta_0$ and $\mathcal{F}(x_0, \Theta_0) \neq \emptyset$, then for all k > 0: $\theta^* \in \Theta_k$ $\mathcal{F}(x_k, \Theta_k) \neq \emptyset$ $\mathcal{F}x_k + Gu_k \leq 1$

But the LMS filter has an additional tracking error, which invalidates the l^2 -stability properties, i.e. "certainty equivalence" no longer applies

Time-varying parameters example

Parameter set Θ_k at time $k \in \{0, 100, 200, 300, 400, 500\}$ for time-varying system with $r_\theta = 0.01$

Time-varying parameters example

Parameter set Θ_k at time $k \in \{0, 5, 25, 70, 120, 500\}$ for time-invariant system for comparison

Persistent excitation

PE condition evaluated over a future horizon is nonconvex in $u_{i|k}, x_{i|k}$:

(PE):
$$\sum_{i=0}^{N_p-1} D^{\top}(x_{i|k}, u_{i|k}) D(x_{i|k}, u_{i|k}) \succeq \beta I$$

Linearise:

Persistent excitation

PE condition evaluated over a future horizon is nonconvex in $u_{i|k}, x_{i|k}$:

(PE):
$$\sum_{i=0}^{N_p-1} D^{\top}(x_{i|k}, u_{i|k}) D(x_{i|k}, u_{i|k}) \succeq \beta I$$

Linearise:

$$\begin{array}{l} \star \mbox{ let } (x,u) = (\bar{x},\bar{u}) + (\check{x},\check{u}) \mbox{ where } \bar{x}_{0|k} = x_k \mbox{ and } \\ \bar{u}_{i|k} = K\bar{x}_{i|k} + v^*_{i+1|k-1} \\ \bar{x}_{i+1|k} = A(\hat{\theta}_k)\bar{x}_{i|k} + B(\hat{\theta}_k)\bar{u}_{i|k} \\ \star \mbox{ then } D = \bar{D} + \check{D}, \mbox{ where } \bar{D} = D(\bar{x},\bar{u}), \mbox{ } \check{D} = D(\check{x},\check{u}) \\ D^{\top}D = \check{D}^{\top}\bar{D} + \bar{D}^{\top}\check{D} + \bar{D}^{\top}\bar{D} + \check{D}^{\top}\check{D} \\ \succeq \check{D}^{\top}\bar{D} + \bar{D}^{\top}\check{D} + \bar{D}^{\top}\bar{D} \\ \star \mbox{ so } \quad \check{D}^{\top}\bar{D} + \bar{D}^{\top}\check{D} + \bar{D}^{\top}\bar{D} \succeq \beta I \implies D^{\top}D \succeq \beta I \end{array}$$

Persistent excitation

$$\succ \text{ A sufficient condition for } \sum_{i=0}^{N_p-1} D_{i|k}^\top D_{i|k} \succeq \beta I \text{ is}$$

$$(\mathsf{PE-LMI}): \qquad \sum_{i=0}^{N_p-1} \left(\check{D}_{i|k}^\top \bar{D}_{i|k} + \bar{D}_{i|k}^\top \check{D}_{i|k} + \bar{D}_{i|k}^\top \bar{D}_{i|k} \right) \succeq \beta I.$$

 $\,\triangleright\,$ This can be expressed in terms of

$$\tilde{x}_{i|k} \in \mathcal{X}_{i|k} - \{\bar{x}_{i|k}\} \tilde{u}_{i|k} \in K(\mathcal{X}_{i|k} - \{\bar{x}_{i|k}\}) + \{v_{i|k}\} - \{v_{i+1|k-1}^*\}$$

using

$$\check{D}_{i|k} \in \operatorname{co}\left\{D\left(U^{j}\alpha_{i|k} - \bar{x}_{i|k}, K(U^{j}\alpha_{i|k} - \bar{x}_{i|k}) + v_{i|k} - v_{i+1|k-1}^{*}\right)\right\}$$

Hence (PE-LMI) is equivalent to an LMI in variables $\mathbf{v}_k, \boldsymbol{\alpha}_k, \beta$

Robust adaptive multiobjective MPC algorithm

Offline: Choose Θ_0 , \mathcal{X} , γ , N_p , K, and compute P

Online, at each time $k = 1, 2, \ldots$:

- **1** Given x_k , update set (Θ_k) and point $(\hat{\theta}_k)$ parameter estimates, and compute $\bar{x}_{i|k}, \bar{u}_{i|k}, i = 0, \dots, N-1$
- 2 Compute the solution $(\mathbf{v}_k^*, \boldsymbol{\alpha}_k^*, \boldsymbol{\Lambda}_k^*)$ of the semidefinite program $\min_{\mathbf{v}_k, \boldsymbol{\alpha}_k, \boldsymbol{\Lambda}_k, \beta} J(x_k, \hat{\theta}_k, \mathbf{v}_k) - \gamma \beta$ subject to $(\mathbf{v}_k, \boldsymbol{\alpha}_k, \boldsymbol{\Lambda}_k) \in \mathcal{F}(x_k, \Theta_k)$ and (PE-LMI)

3 Apply the control law $u_k^* = Kx_k + v_{0|k}^*$

How to choose γ ? Stability? Closed loop PE?

Let
$$D(x, Kx) = \sum_{j=1}^{p} \Phi_j[\theta]_j x$$
, where $\Phi_j = A_j + B_j K$ $j = 1, \dots, p$

The terminal feedback law u = Kx is on average PE if

(a).
$$\underline{\sigma}([\operatorname{vec}(\Phi_1) \cdots \operatorname{vec}(\Phi_p)]) = \sigma_K > 0$$

(b). $\mathbb{E}\{ww^{\top}\} \succeq \epsilon_w I$

Here (a)
$$\Rightarrow \| [\operatorname{vec}(\Phi_1) \cdots \operatorname{vec}(\Phi_p)]\theta \| \ge \sigma_K \|\theta\|$$

(b) $\Rightarrow \mathbb{E}\{xx^\top\} \succeq \epsilon_w I$

so that

$$\theta^{\top} \sum_{i=0}^{N_p-1} \mathbb{E}\{D(x_i, Kx_i)^{\top} D(x_i, Kx_i)\} \theta \ge \epsilon_w \sigma_K^2 \|\theta\|^2$$
$$\implies \sum_{i=\kappa}^{\kappa+N_p-1} \mathbb{E}\{D_{i|k}^{\top} D_{i|k}\} \succeq \epsilon_w \sigma_K^2 \qquad \forall \kappa \ge N$$

Impose PE conditions on predictions in a chain of windows:

Offline: Choose Θ_0 , \mathcal{X} , N_p , K, and compute P

Online, at each time $k = 1, 2, \ldots$:

I Given x_k , update Θ_k , $\hat{\theta}_k$ and compute $\bar{x}_{i|k}$, $\bar{u}_{i|k}$, $i = 0, \dots, N + N_p - 1$

2 Compute
$$\hat{\beta}_{\kappa|k} := \min_{x_{\kappa} \in \mathcal{X}_{\kappa|k-1}} \max_{\hat{\beta}} \hat{\beta}$$
 s.t. (PE-LMI) and $v_{i|k} = v_{i+1|k-1}^* \forall i$ for $\kappa = -N_p + 1, \dots, 0, \dots, N$

3 Compute the solution $(\mathbf{v}_k^*, \pmb{\alpha}_k^*, \pmb{\Lambda}_k^*, \pmb{\beta}_k^*)$ of the semidefinite program

$$\begin{split} & \min_{\mathbf{v}_k, \boldsymbol{\alpha}_k, \boldsymbol{\Lambda}_k, \boldsymbol{\beta}_k} J(x_k, \hat{\theta}_k, \mathbf{v}_k) \\ & \text{subject to } (\mathbf{v}_k, \boldsymbol{\alpha}_k, \boldsymbol{\Lambda}_k) \in \mathcal{F}(x_k, \Theta_k) \text{ and } (\mathsf{PE-LMI}) \end{split}$$

4 Apply the control law $u_k^* = Kx_k + v_{0|k}^*$

Closed loop PE condition

. . . .

Closed loop properties:

If $\theta^* \in \Theta_0$ and $\mathcal{F}(x_0, \Theta_0) \neq \emptyset$, then for all k > 0: **1** $\theta^* \in \Theta_k$ **2** $\mathcal{F}(x_k, \Theta_k) \neq \emptyset$ **3** $Fx_k + Gu_k < \mathbf{1}$

• The system
$$x_{k+1} = A(\theta^*)x_k + B(\theta^*)u_k^* + w_k$$
 is ISS
• $\sum_{i=0}^{N_p-1} \mathbb{E}\left\{D(x_{k+i}, u_{k+i})^\top D(x_{k+i}, u_{k+i})\right\} \succeq \epsilon_w \sigma_K^2 I$

Example with N = 25, $N_p = 3$ [Marafioti, Bitmead, Hovd, 2014] Mean and range of β_t for 30 disturbance sequences

Example with N = 25, $N_p = 3$ [Marafioti, Bitmead, Hovd, 2014] Mean and range of β_t for 30 disturbance sequences

Convergence of parameter set estimate, $vol(\Theta_t)$

red: without PE constraints

Convergence and computation for N=25, $N_p=3$

	Volume %			Mean β_t	CPU time	
	Θ_{10}	Θ_{100}	Θ_{500}		step 2	step 3
with PE	25.4	2.67	0.26	4.9×10^{-5}	0.958	0.073
without PE	25.3	5.77	4.22	9.0×10^{-10}	-	0.052

Differentiable MPC

- MPC law: $u_N(x_k, \hat{\theta}_k, \Theta_k)$ is the solution of a multiparametric programming problem
- Differentiable MPC uses the gradient $\nabla_{\hat{\theta}} u_N(\cdot)$ to train a neural network (NN) with weights $\hat{\theta}_k$ via back-propagation
- Update $\hat{\theta}_k$ with MPC optimization embedded in a NN layer; retain parameter set estimate Θ_k for safe constraint handling

Linearly parameterised system model:

$$x_{k+1} = f(x_k, u_k, \theta^*) + w_k \begin{cases} D_k = D(x_k, u_k) \\ f(x_k, u_k, \theta) = D_k \theta + d_k \end{cases} \begin{cases} D_k = D(x_k, u_k) \\ d_k = d(x_k, u_k) \end{cases}$$

Parameter set estimate:

$$\Theta_{k+1} \supseteq \Theta_k \cap \Delta_{k+1}$$
$$\Delta_{k+1} = \{\theta : x_{k+1} - D_k\theta - d_k \in \mathcal{W}\}$$

Imitation learning problem: identify θ^* by observing an expert controller

n θ_k to minimize a loss function $\frac{1}{T} \sum_{t=k-T+1}^k \left(\|\mathbf{u}_t - \mathbf{u}_N(x_t, \theta_k, \Theta_k)\|^2 + \sigma \|\hat{w}_t\|^2 \right)$

where

$$\begin{split} \mathbf{u}_t &= \{u_t, \dots, u_{t+N-1}\} &= \text{observed expert control sequence} \\ \mathbf{u}_N(x_t, \hat{\theta}_k, \Theta_k) &= \{u_{0|t}, \dots, u_{N-1|t}\} &= \text{MPC law for an initial state } x_t \\ \hat{w}_t &= x_{t+1} - f(x_k, u_k, \hat{\theta}_k) &= 1\text{-step ahead error} \end{split}$$

Linearly parameterised system model:

$$x_{k+1} = f(x_k, u_k, \theta^*) + w_k \begin{cases} D_k = D(x_k, u_k) \\ f(x_k, u_k, \theta) = D_k \theta + d_k \end{cases} \begin{cases} D_k = D(x_k, u_k) \\ d_k = d(x_k, u_k) \end{cases}$$

Parameter set estimate:

$$\Theta_{k+1} \supseteq \Theta_k \cap \Delta_{k+1}$$
$$\Delta_{k+1} = \{\theta : x_{k+1} - D_k \theta - d_k \in \mathcal{W}\}$$

Imitation learning problem: identify θ^* by observing an expert controller

Train $\hat{\theta}_k$ to minimize a loss function

$$\frac{1}{T} \sum_{t=k-T+1}^{k} \left(\|\mathbf{u}_t - \mathbf{u}_N(x_t, \theta_k, \Theta_k)\|^2 + \sigma \|\hat{w}_t\|^2 \right)$$

where

 $\begin{array}{ll} \mathbf{u}_t = \{u_t, \ldots, u_{t+N-1}\} & = \text{observed expert control sequence} \\ \mathbf{u}_N(x_t, \hat{\theta}_k, \Theta_k) = \{u_{0|t}, \ldots, u_{N-1|t}\} & = \text{MPC law for an initial state } x_t \\ \hat{w}_t = x_{t+1} - f(x_k, u_k, \hat{\theta}_k) & = 1\text{-step ahead error} \end{array}$

Problem: Regulate (y, \dot{y}) subject to bounds on y Prior assumptions: 2nd order LTI model

Training results for varying damping $c\ \&\ horizon\ N$

Closed-loop responses: expert (solid lines), learned controllers (dots)

Implementation issues:

- \star nonconvexity and non-uniqueness of optimal parameters
- \star gradient information can vanish or explode across a prediction horizon
- ★ expert controller may not be persistently exciting

Differentiable MPC: learning the MPC performance index

Platoon problem:

Prior assumptions:

- System model $(\ddot{y}_i = u_i)$ is known
- y, a, b are known

Unknown MPC cost to be learnt from observations of an expert controller

Differentiable MPC: learning the MPC performance index

- n = 10 vehicles $\implies x \in \mathbb{R}^{18}$, $u \in \mathbb{R}^{10}$
- Cost weights Q, R initialized as random diagonal matrices
- 500 training iterations:

Differentiable MPC: learning the MPC performance index

Performance of learnt MPC with horizons N = 5, 10, 15, 20:

- constraints $y_{i+1} - y_i \ge \underline{y} = 30$ m are satisfied

– approximately constrained LQ-optimal for N=20

Conclusions

- Adaptive robust MPC is computationally tractable
- Set-membership parameter estimation and robust tube MPC
- Closed loop stability (ISS) and parameter convergence (PE)

Future work

- Can we relax the assumption of bounded disturbances?
- How to combine PE conditions and RNN model adaptation?

References:

- M. Lorenzen, M. Cannon, F. Allgöwer, Robust MPC with recursive model update. Automatica, 2019
- S. East, M. Gallieri, J. Masci, J. Koutnik, M. Cannon, Infinite-horizon differentiable Model Predictive Control. *ICLR*, 2020
- X. Lu, M. Cannon, D. Koksal-Rivet, Robust adaptive model predictive control: performance and parameter estimation. Int. J. Robust & Nonlinear Control, 2020

Thanks to: Xiaonan Lu, Sebastian East, Matthias Lorenzen

Questions?