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Background
I Aviation industry currently contributes around 2% of worldwide

CO2 emissions and has committed to reducing that level.
I Short-haul flights (< 3h) represent 53% of air traffic.

Figure 1: Short-haul flights from London (left) and typical
short-haul airliner BAe 146 (right).

I Hybridisation of short-haul aircraft propulsion systems: aim is
to reduce fuel consumption and hence pollutants.
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Scenario
I BAe 146 equipped with a parallel hybrid-electric propulsion

system (4 systems: 5MW gas turbine / 2MW electric motor).

Figure 2: Parallel hybrid-electric propulsion.

Parameter Symbol Value Units
Fuel mass mfuel 8000 kg
Battery SOC range

[
E ;E

]
[221; 939] MJ

Gas turbine power range
[
Pgt;Pgt

]
[0; 5] MW

Motor power range
[
Pem;Pem

]
[0; 2] MW

Number of systems n 4 −

Table 1: Propulsion parameters.
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Scenario

Parameter Symbol Value Units
Mass (MTOW) m 42000 kg
Gravity acceleration g 9.81 m s−2

Wing area S 77.3 m2

Density of air ρ 1.225 kgm−3

Lift coefficients
b0 0.43 −
b1 0.11 deg−1

Drag coefficients
a0 0.029 −
a1 0.004 deg−1

a2 5.3e−4 deg−2

Flight time T 3600 s

Table 2: Aircraft parameters.
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Scenario

I A representative short-haul flight mission profile is prescribed:
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Energy management problem
How to distribute the power demand across the different available
sources of energy, while minimising fuel consumption ?
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Naive solution
I A heuristic solution: charge depleting charge sustaining

(CDCS) strategy, i.e. deplete the batteries fully at start.
I CDCS is commonly used in hybrid cars.
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Figure 3: Energy mix with CDCS strategy (one couple gt / em).

I Can we do better ?
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Problem formulation

I The energy management problem will be formulated as a
convex program, solved using a model predictive control
approach.

I The predicted performances are optimised subject to
constraints on power flow and stored energy, and subject to
the nonlinear aircraft dynamics, including nonlinear losses in
powertrain components.
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Modeling

Goal
Minimise the cost function

J = −
∫ T

0
ṁfuel(Pgt, ωgt) dt. (1)

Assuming perfect mechanical coupling, the power balance is

Pdrv(t) = Pgt(t) + Pem(t). (2)
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I Pdrv ≡ drive power.
I Pem ≡ electric power.
I Pgt ≡ gas turbine power.



Modeling: aircraft dynamics (Pdrv)
Assume a 2D point-mass model of an aircraft

Figure 4: Aircraft forces and motion.

The equilibrium of forces yields

m
d
dt

(−→v ) =
−→
T +

−→
L +
−→
D +

−→
W .
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Modeling: aircraft dynamics (Pdrv)

I Equations of motion:

m
dv
dt

+ mg sin γ = T cosα− 1
2
CD(α)ρSv2, (3)

mv
dγ
dt

+ mg cos γ = T sinα +
1
2
CL(α)ρSv2, (4)

where v and γ are the velocity and the flight path angle
(prescribed), CL and CD the lift and drag coefficients, α the
angle of attack.
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Modeling: electric motor (Pem)

I The electric bus is modelled as an equivalent circuit with
internal resistance R and open-circuit voltage U such that

Pb = g
(
Pem (t) , ωem (t)

)
=

U2

2R

(
1−

√
1− 4R

U2Pc(Pem(t), ωem(t))

)
, (5)

where ωem is the electric motor shaft rotation speed.
I The electric losses in the electric motor are modelled as

Pc = h(Pem, ωem)

= κ2(ωem)P2
em + κ1(ωem)Pem + κ0(ωem). (6)
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Modeling: electric motor (Pem)

I Battery state of charge (SOC) update equation:

Ė = −g
(
Pem (t) , ωem (t)

)
. (7)

I Constraints on the electric motor and battery limitations:

E ≤ E ≤ E , (8)

Pem ≤ Pem ≤ Pem, (9)

ωem ≤ ωem ≤ ωem. (10)
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Modeling: gas turbine (Pgt)

I Rate of change of the aircraft mass:

ṁ = ṁfuel = −f (Pgt(t), ωgt(t)), (11)

where ωgt is the gas turbine shaft rotation speed.
I Mechanical loss map:

f (Pgt, ωgt) = β2(ωgt)P
2
gt + β1(ωgt)Pgt + β0(ωgt). (12)

I Constraints on the gas turbine:

Pgt ≤ Pgt ≤ Pgt, (13)

ωgt ≤ ωgt ≤ ωgt. (14)
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Optimisation problem

min
Pgt,Pem,Pdrv
m, E , ωgt, ωem

−
∫ T

0
ṁ(Pgt, ωgt) dt (15)

s.t. Pdrv = Pgt + Pem, Pdrv = Tv cosα

m
dv
dt

+ mg sin γ = T cosα− 1
2
CD(α)ρSv2

mv
dγ
dt

+ mg cos γ = T sinα +
1
2
CL(α)ρSv2

ṁ = −f (Pgt, ωgt)

Ė = −g(Pem, ωem)

E ≤ E ≤ E

Pgt ≤ Pgt ≤ Pgt

ωgt ≤ ωgt ≤ ωgt

Pem ≤ Pem ≤ Pem

ωem ≤ ωem ≤ ωem
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Optimisation problem

min
Pgt,Pem,Pdrv
m, E , ωgt, ωem

−
∫ T

0
ṁ(Pgt, ωgt) dt (16)

s.t. Pdrv = Pgt + Pem, Pdrv = Tv cosα

m
dv
dt

+ mg sin γ = T cosα− 1
2
CD(α)ρSv2

mv
dγ
dt

+ mg cos γ = T sinα +
1
2
CL(α)ρSv2

ṁ = −f (Pgt, ωgt)

Ė = −g(Pem, ωem)

E ≤ E ≤ E

Pgt ≤ Pgt ≤ Pgt

ωgt ≤ ωgt ≤ ωgt

Pem ≤ Pem ≤ Pem

ωem ≤ ωem ≤ ωem
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Convex formulation

I Problem (16) is unfortunately non convex, making a real-time
implementation computationally intractable.

I A convex formulation would ensure convergence to a global
optimum if the problem is feasible.

I Moreover, convex programs can be solved efficiently.
I Convex programs are of the form

min
u,x

f0(x , u)

s. t. fi (x , u) = 0, i = 1, . . . ,m
gj(x , u) ≤ 0, j = 1, . . . , l

with f0 convex, fi linear and gj convex w.r.t. inputs and states.
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Convex formulation
I The dynamical constraints (3) and (4) are nonlinear because

of the thrust and aerodynamic terms:

m
dv
dt

+ mg sin γ = T cosα− 1
2
CD(α)ρSv2,

mv
dγ
dt

+ mg cos γ = T sinα +
1
2
CL(α)ρSv2.

I Thrust can be eliminated noting that T sinα << L and
Pdrv = Tv cosα. Hence

Pdrv = m
d
dt

(
1
2
v2) +

1
2
CD(α)ρSv3 + mg sin γv , (17)

mv
dγ
dt

+ mg cos γ =
1
2
CL(α)ρSv2. (18)
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Convex formulation

I Assuming

CD(αi ) = a2α
2
i + a1αi + a0, a2 > 0 (19)

CL(αi ) = b1αi + b0, b1 > 0 (20)

and eliminating α from the EOM yields

Pdrv = η2m
2 + η1m + η0. (21)

I η2, η1, η0 are functions of the prescribed v and γ and η2 ≥ 0.
I From the objective (minimisation of the rate of change of

aircraft mass), equality can be relaxed by inequality

Pgt + Pem = Pdrv ≥ η2m
2 + η1m + η0. (22)
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Convex formulation
I The loss functions f and h from equations (12) and (6) are

nonconvex because the coefficients depend on the rotation
speed

f (Pgt, ωgt) = β2(ωgt)P
2
gt + β1(ωgt)Pgt + β0(ωgt),

h(Pem, ωem) = κ2(ωem)P2
em + κ1(ωem)Pem + κ0(ωem).

I Assuming a gear ratio of 1:1 so that ωdrv = ωgt = ωem, and
noting that ∃Φ : ωdrv = Φ(v , h), the loss coefficients can be
computed apriori from experimental data

f (Pgt) = β2P
2
gt + β1Pgt + β0, (23)

h(Pem) = κ2P
2
em + κ1Pem + κ0. (24)

I In practice, we can safely assume κ2 = 0 and β2 = 0.
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Convex formulation
I The battery SOC update equation is nonlinear

Ė = −U2

2R

(
1−

√
1− 4R

U2 (κ1Pem + κ0)

)
︸ ︷︷ ︸

≡g

.

I However, the change of variable

Pb = g(Pem),

Pem = g−1(Pb) = − 1
κ1

( R

U2P
2
b − Pb + κ0

)
,

where g−1 is concave (κ1 > 0), yields a linear SOC constraint

Ė = −Pb, (25)

and a convex power balance

Pgt ≥ η2m
2 + η1m + η0 − g−1(Pb). (26)
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Convex formulation
I To obtain a finite-dimensional optimisation problem, all

equations are discretised with fixed sampling interval δ over a
horizon N.

min
Pgt,Pb Pdrv

m,E , ωgt, ωem

N−1∑
i=0

f (Pgt,i )δ (27)

s.t. Pgt,i ≥ η2,im
2
i + η1,imi + η0,i − g−1

i (Pb,i )

mi+1 = mi − fi (Pgt,i ) δ

Ei+1 = Ei − Pb,i δ

E ≤ Ei ≤ E

Pgt ≤ Pgt,i ≤ Pgt

Pb,i ≤ Pb,i ≤ Pb,i
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Results

I The convex program (27) is solved at each time step with a
shrinking horizon.

I At each time step, the energy and mass are measured and the
problem is updated with m0 = m(kδ), E0 = E (kδ).

I The optimisation problem was solved using CVX with SDPT3.
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Results: Power mix
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I The optimal strategy allows fuel savings of 3.2% over CDCS.
I Windmilling (i.e operation of the electric motor in generator

mode to recharge the batteries) was allowed at the end.
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Results: effect of increased fuel consumption
What if rate of fuel consumption is doubled ?
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I The ratio gas turbine to electric power is higher at the start to
reduce the mass (and hence Pdrv) as fast as possible.
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Results: effect of gas turbine saturation
What if maximum gas turbine power is limited to Pgt = 3MW ?
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I The electric energy is mostly used at the power peak to
compensate for gas turbine saturation.
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Conclusion

I A convex optimisation program to solve the energy
management problem of a (parallel) hybrid-electric aircraft.

I Model of the aircraft, electric motor and gas turbine was
included.

I The problem was solved with CVX and the solution
demonstrated significant energy savings w.r.t. heuristic
strategies.

I Advantages: MPC-like strategy (feedback), convex program.
I Limitations: flight profile must be specified apriori.
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Conclusion

Future work includes:
I The extension of the present algorithm to series-hybrid

propulsion
I The development of 1st order solution methods exploiting the

high degree of separability of the problem (ADMM)
I The implementation of a convex trajectory generation

algorithm.
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Thank you !
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