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Neural Network Background
Machine learning method for classification and regression

y = f(x)
Neural Networks are a function approximator
F(x) = f(x, {W}) = Wig(Wox)
Typically simple nonlinear activation functions, e.g.
¢i(x;) = ReLU(x;) = max{0, x;}
‘Trained’ by minimising error ¢
{W}* = argmin {(y, f(x,{W}))
{w}

Solution approximated using gradient-based optimization
» Backpropagation (chain rule)
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Motivation

Significant interest in Deep Learning since the publication of
AlexNet!

Neural networks now used for end-to-end learning based control?

g
Black box method - no guarantees of o
safety |

|

— Stability

— Hard constraint satisfaction

(0D
Goal: Introduce structure to NN architecture to provide
guarantees of hard constraint satisfaction and stability.

1A, Krizhevsky, |. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural
networks,”

2M. Bojarski, D. D. Testa, D. Dworakowski, et al., End to end learning for self-driving cars,
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Differentiable Optimization
Solution of optimization problem as layer in neural network>*
xi41 = argmin x " H(x))x + q(x)) " x
x
s.t. 1(x)) < M(x))x < u(xy)

Output can be considered solution of the implicit equation
xi+1 = {KKT = 0}, which can then be differentiated.

dHx* + Hdx +dx+dMTy*+...=0
dMx* + Mdx —dg =0
D(Mz* —u)dA+...=0

Can then be trained using backpropogation - no need to unroll.

3B. Amos and J. Z. Kolter, “OptNet: Differentiable Optimization as a Layer in Neural Networks,"

4A. Agrawal, B. Amos, S. Barratt, et al., Differentiable convex optimization layers,
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Differentiable Control

This idea allows any (convex) optimization-based controller to be
embedded as a layer in a neural network®

Imitation Learning: ‘expert’ control behaviour, (u, x), is available

Xe41 = 8(Xe, Us, dt), U = ’?(Xt)

Expert controller is approximated with convex optimization policy

Fxe) ~ Fxe {W)) = argmin J(xe, ue, {W})

Can be used to learn {system dynamics, cost function}.

5A. Agrawal, S. Barratt, S. Boyd, et al., Learning convex optimization control policies,
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Differentiable Model Predictive Control

Hard Constraints dealt with systematically using MPC.
Differentiable model predictive control proposed as end-to-end
learning framework®

t+N—-1
f(Xt—, {W}) = ﬁta at:t+N = argmin Z Jt()?t+17 Ug, {W})

R UtGZA/{t, i—t
Ser1=g(Re,ur) Vt

Can be used to learn {system dynamics, cost, constraints}

Limitations:
— Did not consider state constraints

— No guarantees of closed loop stability
— Considered very general case of MPC
— ‘solved’ using box DDP: may not be convergent

B, Amos, I. D. J. Rodriguez, J. Sacks, et al., “Differentiable mpc for end-to-end planning and control,”

7/29



Overview

Differentiable Optimization & MPC

Infinite Horizon Differentiable MPC

Numerical Experiments

Future Outlook & Conclusion

8/29



Linear Quadratic MPC

Consider only linear time invariant systems x¢yq4: = Ax; + Bu; with
quadratic cost and box constraints, then finite horizon model
predictive controller is given by

1 N—1 1 N
U = arglrl'nin 5 kz(:) uZ—Ruk + 5 kz:lx,:rQXk

s.t. xop = X¢,
Xk+1 = Axx + Bux, ke{0,...,N—1},
u<u<u, ke{0,...,N-—1},
x<xx<Xx, ke{l,...,N},

Reduces to quadratic program form
+ Fast, accurate open-source solvers (e.g. OSQP)

— Badly conditioned in general
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Pre-stabilizing controller

Control input is decomposed into u; = Kx; + du; where
p(A+ BK) < 1 so that

N—1 N
1 1
du* = argmin = (Kxic + 6ug) T R(Kxi 4 duy) + = g X, Qx
Su 2 2
k=0 k=1
s.t. X0 = X,

Xk+1 :(A-l-BK)Xk—f—B(Suk, k € {(),...,/V—].}7
u< Kxx+ou,<u, ke{0,...,N—1}
x<x<Xx, ke{l,...,N},

Exact same controller, still QP, and now well conditioned in
general
— Not feasible in general
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Soft Constraints
Augmented Lagrangian

N—1 N
1 1
du* = argmin = (ka+5uk)TR(ka+5uk)—|—fo,j—ka
Sy 2 2
k=0 k=1
N N-1
+ Ky Z llrk + ky Z lnTsk
k=1 k=0
s.t. xo = X,

xk+1 = (A4 BK)xx + Béux, ke{0,...,N—1},
u—re < Kxg + dug <u+r, ke{0,...,N—1},
r>0

x—sk < xx <X+s,, ke{l,...,N},

s>0

Hard constrains guaranteed for sufficient cost

— No stability guarantees
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Terminal Cost
Qn can be used to provide inifnite-horizon cost

=
-

1
du* = argmin 5 (Kxk + 5uk)TR(KXk + duk) +
ou
0

=
Il
N =

N—1
ZX QX
k=1

N—1

+ ky Zl fk+k Zl 5k+XNQNXN

k=1 k=0
s.t. X0 = X,
xk+1 = (A4 BK)xx + Béux, ke{0,...,N—1},
u—re < Kxg +0u <t+re, ke{0,...,N—1},
r>0
X—sk<xxk <X+s, ke{l,....,N},
s>0

» How do we determine K and Qp?
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Algebraic Riccati Equation

The infinite-horizon discrete-time linear quadratic regulator is

K=—(R+B'PB)"'B"PA

where P is solution of discrete time algebraic Riccati equation

P=ATPA—A"PB(R+B"PB)"'B"PA+ Q.

» Implement K and terminal cost Qy = P.
» For sufficient horizon, N, P defines the infinite-horizon
cost
» — System is stable in closed loop, and robust to model
mismatch

» K and P need to be differentiable
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Algebraic Riccati Equation Derivative

Proposition 2. Let P be the stabilizing solution of (8), and assume that Z; * and (R + BT PB)~!
exist, then the Jacobians of the implicit function defined by (8) are given by
OvecP _ g1 dvecP g dvecP g1 dvecP _
dvecA L2 BvecB L9 BvecQ L9 OvecR
where Zy, . .., Zs are defined by
Zy =12~ (A" ®@ A")[L2 — (PBM:B" ®1I,) — (I, ® PBM>B")
+(PB® PB)(M;® M)(BT ® B")]

Z7\Zs,

Zy = (Vo + In2) (I, @ ATAﬁ)
Z3:= (AT ® AT)[(PB® PB)(My ® My)(I2, + Vi) (In ® B" P)
— (In2 + Vou) (PBM; ® P)]
Zy =12
Zs = (AT ® AT)(PB® PB)(My ® M,),
and My, My, M3 are defined by
M, :=P—PBM,B"P, M,y:=M;' M;:=R+B'PB.

Proof in paper’

7s. East, M. Gallieri, J. Masci, et al., “Infinite-horizon differentiable model predictive control,” in International
Conference on Learning Representations, 2020. [Online]. Available:

https://openreview.net/forum?id=ryxC6kSYPr.
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Algorithm

Algorithm 1 Infinite-horizon MPC Learning

In: M\ S, N >0, 8> 0, Nepochs > 0.

Out: S

for i = 0...Nepocns do

Forward Pass

(K, P) < DARE (7-8) solution

Qr < P

g, < MPC QP (3-5) solution

L < Imitation loss (6)

Backward Pass

Differentiate loss (6)

Differentiate MPC QP solution, 4, 7,
using Appendix B

Differentiate DARE, (P, K),
using Proposition 2

Update step

S « Gradient-based step

» Algorithm can be used to learn a subset S of
M={AB,Q,R,x,X,u,0, ky, ky}

» Learning entire set M simultaneously is hard in general

» N is not differentiable
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Example 1: Mass Spring Damper

Nominal second order systems generated for a range of stability
measures

System 1 2 3 4 5 6 7
c 1 05 01 -01 -03 -05 -06

‘Expert’ data generated using infinite horizon MPC controller
simulated in closed loop

Learn system dynamics from initial random matrices A

Imitation loss - control only

1 T
L= 7 Z Hut:t+th - ﬁS:N(Xt)”%
t=0

Trained with three horizons - N € {2, 4,6}
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Mass-Spring-Damper: Training

N =2 N =4 N =6
wn
5 10 102 1 102
g 1001 10° 10° A
£ 1072 1 1072 1072
2 107 10~ 1 10~ 1
0 1000 0 1000 0 1000
wn
£ (.50 - 0.50 0.50
—
<025 ] 0.25 1 0.25
@)
=
0.00 = : 0.00 0.00 ¥ .
0 1000 0 1000 0 1000
Iteration Iteration Tteration

1 2 3 4 ) 6 7
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Mass-Spring-Damper: Control
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Example 2: Vehicle Platooning
Higher-dimensional real world application: vehicle platooning.
LN WL iy L
@ D ---.ch @D

Requirements

> Stabilize: Vi—Vici —~ Yssand y; —yi_1 —0Vi
» Safe minimum distance: y; —y; 1 >y Vi
> Acceleration limits b< y; <aVi, b<0<a

Reduces to LTI regulation problem.
Systems generated for y, = 10, = x; € R*® and u; € R0

Learned @ and R from random initial matrices, with
N € {5,10, 15,20}, in four experiments for each.
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Vehicle Platooning: Training

2 0.02 1
2 103 \ 3
o)
= g
g 10% - £ N
ué E 0.01 1%
5 1071 - z
1 1 Q 1 1
0 500 0 500
Iterations Iterations
N=5 N =10 N =15 N =20
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Vehicle Platooning: Control

State Prediction

y (m)

Error (m)

N = N =10 N =15 N =20
— — —_— —
N—— SN——7— SN—— SNe—cvi72—7

ol . o | o {e=——
0 20 20 0 20 0 20
1 1 1 1
/
0 0 0 0
—1 - -1 —1 - —1 -
0 20 20 0 20 0 20
t(s) t(s) t(s) t(s)
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Outlook

Main limitation is restriction to LTI systems

+ MPC solution still obtained from QP for LTV systems

— Stability becomes a significant problem over long prediction
horizons

+ Can be addressed using LMI

— Challenging to enforce existence at each learning iteration

Other directions
» Deeper learning
» Reinforcement learning
» Dedicated solver(s)
» Adaptive/scenario MPC
» Scale experiments
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Conclusion

> Algorithmic advances in differentiable MPC
» Inifnite-horizon cost obtained from solution of DARE (and
differentiated)
» Hard constraints on state and input considered
» Solution guaranteed using augmented Lagrangian
» QP conditioned using pre-stabilizing controller

» Algorithm demonstrated in simulation on MSD and vehicle
platooning problem

» Work to be presented at ICLR 20202

8s. East, M. Gallieri, J. Masci, et al., “Infinite-horizon differentiable model predictive control,”
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