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Neural Network Background
Machine learning method for classification and regression

y = f̂ (x)

Neural Networks are a function approximator

f̂ (x) ⇡ f (x , {W }) = W1�(W0x)

Typically simple nonlinear activation functions, e.g.

�i (xi ) = ReLU(xi ) = max{0, xi}

‘Trained’ by minimising error `

{W }? = argmin
{W }

`(y , f (x , {W }))

Solution approximated using gradient-based optimization

I Backpropagation (chain rule)
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Motivation
Significant interest in Deep Learning since the publication of
AlexNet1

Neural networks now used for end-to-end learning based control2

Black box method - no guarantees of
safety

– Stability

– Hard constraint satisfaction

Goal: Introduce structure to NN architecture to provide
guarantees of hard constraint satisfaction and stability.

1A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural
networks,” in NIPS, 2012.

2M. Bojarski, D. D. Testa, D. Dworakowski, et al., End to end learning for self-driving cars, 2016. [Online].
Available: arXiv:1604.07316.
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Di↵erentiable Optimization

Solution of optimization problem as layer in neural network34

xl+1 = argmin
x

x
>
H(xl)x + q(xl)

>
x

s.t. l(xl)  M(xl)x  u(xl)

Output can be considered solution of the implicit equation
xl+1 = {KKT = 0}, which can then be di↵erentiated.

dHx? + Hdx + dx + dM>
y
? + . . . = 0

dMx
? +Mdx � dq = 0

D(Mz
? � u)d� + . . . = 0

Can then be trained using backpropogation - no need to unroll.

3B. Amos and J. Z. Kolter, “OptNet: Di↵erentiable Optimization as a Layer in Neural Networks,”
arXiv:1703.00443 [cs, math, stat], Mar. 2017, arXiv: 1703.00443.

4A. Agrawal, B. Amos, S. Barratt, et al., Di↵erentiable convex optimization layers, 2019. arXiv: 1910.12430
[cs.LG].
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Di↵erentiable Control

This idea allows any (convex) optimization-based controller to be
embedded as a layer in a neural network5

Imitation Learning: ‘expert’ control behaviour, (u, x), is available

xt+1 = g(xt , ut , dt), ut = f̂ (xt)

Expert controller is approximated with convex optimization policy

f̂ (xt) ⇡ f (xt , {W }) = argmin
ut2Ut

J(xt , ut , {W })

Can be used to learn {system dynamics, cost function}.

5A. Agrawal, S. Barratt, S. Boyd, et al., Learning convex optimization control policies, 2019. arXiv: 1912.09529
[math.OC].
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Di↵erentiable Model Predictive Control

Hard Constraints dealt with systematically using MPC.
Di↵erentiable model predictive control proposed as end-to-end
learning framework6

f (xt , {W }) = ût , ût:t+N = argmin
ut2Ut ,

x̂t+1=g(x̂t ,ut) 8t

t+N�1X

i=t

Jt(x̂t+1, ut , {W })

Can be used to learn {system dynamics, cost, constraints}

Limitations:

– Did not consider state constraints

– No guarantees of closed loop stability

– Considered very general case of MPC
– ‘solved’ using box DDP: may not be convergent

6B. Amos, I. D. J. Rodriguez, J. Sacks, et al., “Di↵erentiable mpc for end-to-end planning and control,” in
Proceedings of the 32nd International Conference on Neural Information Processing Systems, ser. NIPS’18, 2018.
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Linear Quadratic MPC

Consider only linear time invariant systems xt+dt = Axt + But with
quadratic cost and box constraints, then finite horizon model
predictive controller is given by

u
? = argmin

u

1

2

N�1X

k=0

u
>
k Ruk +

1

2

NX

k=1

x
>
k Qxk

s.t. x0 = xt ,

xk+1 = Axk + Buk , k 2 {0, . . . ,N � 1},

u  uk  u, k 2 {0, . . . ,N � 1},

x  xk  x , k 2 {1, . . . ,N},

Reduces to quadratic program form

+ Fast, accurate open-source solvers (e.g. OSQP)

– Badly conditioned in general
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Pre-stabilizing controller

Control input is decomposed into ut = Kxt + �ut where
⇢(A+ BK ) < 1 so that

�u? = argmin
�u

1

2

N�1X

k=0

(Kxk + �uk)
>
R(Kxk + �uk) +

1

2

NX

k=1

x
>
k Qxk

s.t. x0 = xt ,

xk+1 = (A+BK )xk + B�uk , k 2 {0, . . . ,N � 1},

u  Kxk + �uk  u, k 2 {0, . . . ,N � 1},

x  xk  x , k 2 {1, . . . ,N},

Exact same controller, still QP, and now well conditioned in
general

– Not feasible in general
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Soft Constraints
Augmented Lagrangian

�u? = argmin
�u

1

2

N�1X

k=0

(Kxk + �uk)
>
R(Kxk + �uk) +

1

2

NX

k=1

x
>
k Qxk

+kx

NX

k=1

1>mrk + ku

N�1X

k=0

1>n sk

s.t. x0 = xt ,

xk+1 = (A+ BK )xk + B�uk , k 2 {0, . . . ,N � 1},

u�rk  Kxk + �uk  u+rk , k 2 {0, . . . ,N � 1},

r � 0

x�sk  xk  x+sk , k 2 {1, . . . ,N},

s � 0

Hard constrains guaranteed for su�cient cost

– No stability guarantees
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Terminal Cost
QN can be used to provide inifnite-horizon cost

�u? = argmin
�u

1

2

N�1X

k=0

(Kxk + �uk)
>
R(Kxk + �uk) +

1

2

N�1X

k=1

x
>
k Qxk

+ kx

NX

k=1

1>mrk + ku

N�1X

k=0

1>n sk + x
>
NQNxN

s.t. x0 = xt ,

xk+1 = (A+ BK )xk + B�uk , k 2 {0, . . . ,N � 1},

u � rk  Kxk + �uk  u + rk , k 2 {0, . . . ,N � 1},

r � 0

x � sk  xk  x + sk , k 2 {1, . . . ,N},

s � 0

I How do we determine K and QN?
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Algebraic Riccati Equation

The infinite-horizon discrete-time linear quadratic regulator is

K = �(R + B
>
PB)�1

B
>
PA

where P is solution of discrete time algebraic Riccati equation

P = A
>
PA � A

>
PB(R + B

>
PB)�1

B
>
PA+ Q.

I Implement K and terminal cost QN = P .
I For su�cient horizon, N, P defines the infinite-horizon

cost
I =) System is stable in closed loop, and robust to model

mismatch

I K and P need to be di↵erentiable

13 / 29



Algebraic Riccati Equation Derivative

Proof in paper7

7S. East, M. Gallieri, J. Masci, et al., “Infinite-horizon di↵erentiable model predictive control,” in International
Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=ryxC6kSYPr.
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Algorithm

I Algorithm can be used to learn a subset S of
M = {A,B ,Q,R , x , x , u, u, ku, kx}

I Learning entire set M simultaneously is hard in general

I N is not di↵erentiable
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Example 1: Mass Spring Damper
Nominal second order systems generated for a range of stability
measures

System 1 2 3 4 5 6 7

c 1 0.5 0.1 -0.1 -0.3 -0.5 -0.6

‘Expert’ data generated using infinite horizon MPC controller
simulated in closed loop

Learn system dynamics from initial random matrices A

Imitation loss - control only

L =
1

T

TX

t=0

kut:t+Ndt � û
?
0:N(xt)k22

Trained with three horizons - N 2 {2, 4, 6}
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Mass-Spring-Damper: Training
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Mass-Spring-Damper: Control
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Example 2: Vehicle Platooning

Higher-dimensional real world application: vehicle platooning.

y1 y2 yn�1 yn

Requirements

I Stabilize: yi � yi�1 ! yss and ẏi � ẏi�1 ! 0 8i
I Safe minimum distance: yi � yi�1 � y 8i
I Acceleration limits b  ÿi  a 8i , b  0  a

Reduces to LTI regulation problem.

Systems generated for yn = 10, =) xt 2 R18 and ut 2 R10

Learned Q and R from random initial matrices, with
N 2 {5, 10, 15, 20}, in four experiments for each.
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Vehicle Platooning: Training
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Vehicle Platooning: Control
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Outlook
Main limitation is restriction to LTI systems

+ MPC solution still obtained from QP for LTV systems

– Stability becomes a significant problem over long prediction
horizons

+ Can be addressed using LMI

– Challenging to enforce existence at each learning iteration

Other directions

I Deeper learning

I Reinforcement learning

I Dedicated solver(s)

I Adaptive/scenario MPC

I Scale experiments
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Conclusion

I Algorithmic advances in di↵erentiable MPC
I Inifnite-horizon cost obtained from solution of DARE (and

di↵erentiated)
I Hard constraints on state and input considered
I Solution guaranteed using augmented Lagrangian
I QP conditioned using pre-stabilizing controller

I Algorithm demonstrated in simulation on MSD and vehicle
platooning problem

I Work to be presented at ICLR 20208

8S. East, M. Gallieri, J. Masci, et al., “Infinite-horizon di↵erentiable model predictive control,” in International
Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=ryxC6kSYPr.
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