2020 AAS/AIAA Astrodynamics Specialist Conference August 9-12 2020, South Lake Tahoe

A multirate variational approach to simulation and optimal control for flexible spacecraft

Yana Lishkova , DPhil Candidate* Prof. Sina Ober-Blöbaum [§] Prof. Mark Cannon* Prof. Sigrid Leyendecker [‡]

* Department of Engineering Science, University of Oxford
 § Department of Mathematics, University of Paderborn
 * Chair of Applied Dynamics, University of Erlangen-Nuremberg

Outline

- Short overview
- Mathematical model
- Multirate DMOC
- Computational results and discussion

Overview

• Flexible spacecraft

- Stringent performance and positioning requirements
- Efficient operation
- Lightweight structure designs and induced vibrations- potentially degrading the performance, causing loss of pointing accuracy or even structural damage
- Need for efficient control method maximizing the system's performance while respecting all hard safety-critical constraints
- Multirate Discrete Mechanics and Optimal Control (Multirate DMOC)¹⁻⁴:
- ✓ High fidelity simulation at a reduced computational cost

• Multirate Discrete Mechanics and Optimal Control (Multirate DMOC):

High fidelity simulation at a reduced computational cost

✓ Structure-preserving -> conservation of energy and/or momenta of the system

DMOC

• Multirate Discrete Mechanics and Optimal Control (Multirate DMOC):

- ✓ Structure-preserving -> conservation of energy and/or momenta of the system
- ✓ Multirate discretization -> computational efficiency ⁵

- Reduces the number of optimization variables
- Reduces the number of equality constraints

• Multirate Discrete Mechanics and Optimal Control (Multirate DMOC):

- ✓ Structure-preserving -> conservation of energy and/or momenta of the system
- ✓ Multirate discretization -> computational efficiency
- Unified control methodology -> potential improvement in optimality and constrainthandling capabilities*

• Multirate Discrete Mechanics and Optimal Control (Multirate DMOC):

- ✓ Structure-preserving -> conservation of energy and/or momenta of the system
- ✓ Multirate discretization -> *computational efficiency*
- Unified control methodology -> potential improvement in optimality and constraint- handling capabilities*
- No need for decoupling of the equations of motion -> simple application to a variety of linear and nonlinear models*

• Multirate Discrete Mechanics and Optimal Control (Multirate DMOC):

- ✓ Structure-preserving -> conservation of energy and/or momenta of the system
- ✓ Multirate discretization -> *computational efficiency*
- Unified control methodology -> potential improvement in optimality and constraint- handling capabilities*
- No need for decoupling of the equations of motion -> simple application to a variety of linear and nonlinear models*
- Straightforward selection of slow and fast subsystems -> capability to tailor the solution to the time scales present in the problem to obtain further reductions in computational cost*

• Multirate Discrete Mechanics and Optimal Control (Multirate DMOC):

- ✓ Structure-preserving -> conservation of energy and/or momenta of the system
- ✓ Multirate discretization -> *computational efficiency*
- Unified control methodology -> potential improvement in optimality and constraint- handling capabilities
- No need for decoupling of the equations of motion -> simple application to a variety of linear and nonlinear models
- Straightforward selection of slow and fast subsystems -> capability to tailor the solution to the time scales present in the problem to obtain further reductions in computational cost

Mathematical model

- General linear model neglecting dissipation effects
 - single-axis rest-to-rest rotational maneuver
 - control torque applied at the hub
- Spatial discretization The Assumed Modes Method⁷

$$w(x,t) = \sum_{j=1}^{N} \phi_j(x) \eta_j(t), \quad x \in [0,L]$$

 ϕ_j - assumed spatial mode shapes η_j - time varying modal amplitudes

 ${\cal N}$ - number of modes retained in the approximation ${\cal L}$ - length of the beam

• System description⁷

$$\underline{\xi} = \begin{bmatrix} \theta \\ \underline{\eta} \end{bmatrix}, \qquad \underline{\eta} = [\eta_1, \ \eta_2, \ \dots, \ \eta_N]^T \in \mathbb{R}^{N \times 1}$$

- Lagrange - d'Alembert principle

$$\mathcal{L}(\underline{\xi}, \ \underline{\dot{\xi}}) = \frac{1}{2} \ \underline{\dot{\xi}}^T \ \mathbf{M} \ \underline{\dot{\xi}} - \frac{1}{2} \ \underline{\xi}^T \ \mathbf{K} \ \underline{\xi}, \qquad \delta W = \underline{\mathfrak{f}} \cdot \delta \underline{\xi} = \tau \ \delta \theta$$
$$\delta \int_{t_0}^{t_f} \mathcal{L}(\underline{\xi}, \ \underline{\dot{\xi}}) \ dt + \int_{t_0}^{t_f} (\ \underline{\mathfrak{f}} \cdot \delta \underline{\xi}) \ dt = 0 \text{ for all variations } \delta \underline{\xi} \text{ with } \delta \underline{\xi}(t_0) = \delta \underline{\xi}(t_f) = 0$$
$$\mathbf{M} \ \underline{\ddot{\xi}} + \mathbf{K} \ \underline{\xi} = \mathbf{D} \ \tau, \qquad \mathbf{M} = \begin{bmatrix} M_{\theta\theta} & M_{\theta\eta}^T \\ M_{\theta\eta} & M_{\eta\eta} \end{bmatrix}, \quad \mathbf{K} = \begin{bmatrix} 0 & 0 \\ 0 & K_{\eta\eta} \end{bmatrix}, \qquad \mathbf{D} = [1, 0, ..., 0]^T$$

Transformation to modal coordinates

Table 1: Structural parameters used for the simulations

Hub radius	R	1.0	ft
Hub rotary inertia	J_h	8.0	slug-ft ²
Tip mass	m_t	0.156941	slug
Tip mass rotary inertia	J_t	0.0018	slug-ft ²
Beam length	L	4.0	ft
Beam height	h	6.0	in.
Beam thickness	t	0.125	in.
Beam linear density	ρA	0.0271875	slug/ft
Beam elastic modulus	E	0.1584×10^{10}	lb/ft^2

 Table 2: Natural frequencies

w_1	0	rad/s
w_2	6.454	rad/s
w_3	52.41	rad/s
w_4	$1.607 imes 10^2$	rad/s
w_5	3.381×10^2	rad/s
w_6	$5.78 imes 10^2$	rad/s

N = 5

Multirate formulation

$$\underline{q} = \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \\ q_6 \end{bmatrix} \left\} \underbrace{\underline{q}_s}_{g_f} \longrightarrow \underbrace{w_1 = 0 \text{ rad/s}}_{w_2 = 6.454 \text{ rad/s}} \\ w_3 = 52.41 \text{ rad/s}}_{w_3 = 52.41 \text{ rad/s}} \\ w_5 = 3.381 \times 10^2 \text{ rad/s}} \\ \underline{\mu}_{g_6} \longrightarrow \underbrace{\mu}_{g_6} \longrightarrow$$

Multirate formulation

$$\mathcal{L} = \frac{1}{2} \left((\underline{\dot{q}}^s)^T \underline{\dot{q}}^s - (\underline{q}^s)^T \mathbf{\Lambda}_{\mathbf{s}} \underline{q}^s \right) + \frac{1}{2} \left((\underline{\dot{q}}^f)^T \underline{\dot{q}}^f - (\underline{q}^f)^T \mathbf{\Lambda}_{\mathbf{f}} \underline{q}^f \right)$$

where $\mathbf{\Lambda}_{\mathbf{s}} = \operatorname{diag}(\omega_1^2, \ldots, \omega_3^2), \mathbf{\Lambda}_{\mathbf{f}} = \operatorname{diag}(\omega_4^2, \ldots, \omega_6^2)$

Forward simulation without control

Figure 1: Numerical dissipation of total energy for simulations with $\Delta t = 10^{-4}$ and $t_f = 60$ s

Figure 2: Momentum preservation for simulations with $\Delta t = 10^{-4}$ and $t_f = 60$ s

$$p_{\theta} = \frac{\partial \mathcal{L}}{\partial \dot{\theta}} = M_{\theta\theta} \, \dot{\theta} + (M_{\theta\eta})^T \, \underline{\dot{\eta}}$$

60

Optimal control problem formulation

$$J(x,u) = \int_{t_0}^{t_f} C(\underline{x}(t), u(t)) dt = \frac{1}{2} \int_{t_0}^{t_f} [\underline{x}(t)^T \mathbf{W} \underline{x}(t) + u(t)^2] dt$$

subject to
$$\begin{cases} \frac{\dot{x}(t) = \mathbf{A}\underline{x}(t) + \mathbf{B}\tau(t)}{\underline{q}(t_0) = \mathbf{E}^{-1}\underline{\xi}_{t_0}, & \underline{\xi}_{t_0} = [0, ..., 0]^T \\ \underline{q}(t_f) = \mathbf{E}^{-1}\underline{\xi}_{t_f}, & \underline{\xi}_{t_f} = [\theta_{t_f}, 0, ..., 0]^T \\ \underline{\dot{q}}(t_0) = \underline{\dot{q}}(t_f) = [0, ..., 0]^T \end{cases}$$

where
$$\underline{x}(t) = \begin{bmatrix} \underline{q}(t) \\ \underline{\dot{q}}(t) \end{bmatrix}$$
, $u(t) = \tau(t)$, $\mathbf{A} = \begin{bmatrix} 0 & \mathbf{I} \\ -\mathbf{\Lambda} & 0 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 0 \\ \mathbf{E}^T \mathbf{D} \end{bmatrix}$, $\mathbf{W} = \mathbf{I}$

Example solution

Figure 3: OCP solution with Multirate DMOC for $\theta_{t_f} = 20^\circ$, $t_f = 4.5s$, $\Delta t = 10^{-3}$ and p = 5

Problem size

 $p = \frac{\text{macro time step}}{\text{micro time step}} = \frac{\Delta T}{\Delta t}$

Problem size

 $n_{eq\,con}$ - number of equality constraints

 $n_{slow var}$ - number of optimization variables resulting from discretization on the macro grid $n_{fast var}$ - number of optimization variables resulting from discretization on the micro grid $n_{total var} = n_{slow var} + n_{fast var}$

Figure 4: Size of OCP based on Multirate DMOC for a simulations with $\Delta t = 10^{-3}$ and $t_f = 4.5s$

Main result- the trade-off

Figure 5: Mean computational time with standard deviation and relative error in $\underline{\xi}$ versus p for a constant micro time step of 10^{-3} , $t_f = 4.5s$ and $\theta_{t_f} = 20^{\circ}$

Main result- the trade-off

Figure 5: Mean computational time with standard deviation and relative error in $\underline{\xi}$ versus p for a constant micro time step of 10^{-3} , $t_f = 4.5s$ and $\theta_{t_f} = 20^{\circ}$

Further customization

 $\begin{array}{ll} \underline{q}^s \in R^{\,r \times 1} & r \text{ - degrees of freedom of the slow subsystem} \\ q^f \in R^{\,(N+1-r) \times 1} & \text{ so far in the examples } r=3, N=5 \end{array}$

 $n_{total var} = n_{slow var} + n_{fast var}$

$$n_{slow var}(p, r, N, t_f, \Delta t) = 2 r \left(\frac{t_f}{p \Delta t} + 1\right)$$
$$n_{fast var}(r, N, t_f, \Delta t) = 2 (N + 1 - r) \left(\frac{t_f}{\Delta t} + 1\right) + \frac{t_f}{\Delta t}$$

Figure 6: Mean computational time with standard deviation versus p for a constant micro time step of 10^{-3} , $t_f = 4.5s$ and $\theta_{t_f} = 20^{\circ}$

Figure 7: Relative error in $\underline{\xi}$ versus p for a constant micro time step of 10^{-3} , $t_f = 4.5s$ and $\theta_{t_f} = 20^{\circ}$

Conclusions

• Multirate Discrete Mechanics and Optimal Control (Multirate DMOC):

High fidelity simulation at a reduced computational cost

- ✓ Structure-preserving -> conservation of energy and/or momenta of the system
- ✓ Multirate discretization -> *computational efficiency*
- Unified control methodology -> potential improvement in optimality and constraint- handling capabilities
- No need for decoupling of the equations of motion -> simple application to a variety of linear and nonlinear models
- Straightforward selection of slow and fast subsystems -> capability to tailor the solution to the time scales present in the problem to obtain further reductions in computational cost

Flexibility to tailor the method to the time scales of the problem and obtain the required fidelity at a reduced computational cost!

• Future work – methods for obtaining optimal p and r and extending the work to models including kinematic nonlinearities and dissipation effects

THANK YOU FOR YOUR ATTENTION!

Contact details:

Yana Lishkova, yana.lishkova@eng.ox.ac.uk

Address: St. Edmund Hall, Queen's Lane, OX1 4AR, United Kingdom

Main references:

- [1] T. Gail, S. Ober-Blöbaum, and S. Leyendecker, "Variational multirate integration in discrete mechanics and optimal control," *Proceedings of* ECCOMAS, 2017, pp. 1–4.
- [2] O. Junge, J. E. Marsden, and S. Ober-Blöbaum, "Discrete mechanics and optimal control," IFAC Proceedings Volumes, Vol. 38, No. 1, 2005, pp. 538–543.
- [3] S. Ober-Blöbaum, O. Junge, and J. E. Marsden, "Discrete mechanics and optimal control: an analysis," *ESAIM: Control, Optimisation and Calculus of Variations*, Vol. 17, No. 2, 2011, pp. 322–352.
- [4] S. Leyendecker and S. Ober-Blöbaum, "A Variational Approach to Multirate Integration for Constrained Systems," *Multibody Dynamics: Computational Methods and Applications* (J.-C. Samin and P. Fisette, eds.), pp. 97–121, Dordrecht: Springer Netherlands, 2013
- [5] T. Gail, S. Leyendecker, and S. Ober-Blöbaum, "Computing time investigations of variational multirate integrators," *ECCOMAS Multibody Dynamics*, 2013.
- [6] M. Azadi, M. Eghtesad, S. Fazelzadeh, and E. Azadi, "Dynamics and control of a smart flexible satellite moving in an orbit," *Multibody System Dynamics*, Vol. 35, No. 1, 2015, pp. 1–23.
- [7] J. L. Junkins and Y. Kim, *Introduction to dynamics and control of flexible structures*. American Institute of Aeronautics and Astronautics, 1993.