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* Short overview
 Mathematical model

 Multirate DMOC

* Computational results and discussion
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* Flexible spacecraft

e Stringent performance and positioning requirements

» Efficient operation

* Lightweight structure designs and induced vibrations- potentially degrading the
performance, causing loss of pointing accuracy or even structural damage

-> Need for efficient control method maximizing the system’s performance while
respecting all hard safety-critical constraints

* Multirate Discrete Mechanics and Optimal Control (Multirate DMOC) 14:

v" High fidelity simulation at a reduced computational cost
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* Multirate Discrete Mechanics and Optimal Control (Multirate DMOC):

High fidelity simulation at a reduced computational cost

v’ Structure-preserving -> conservation of energy and/or momenta of the system

Standard direct methods
DMOC
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* Multirate Discrete Mechanics and Optimal Control (Multirate DMOC):

High fidelity simulation at a reduced computational cost
v’ Structure-preserving -> conservation of energy and/or momenta of the system

v" Multirate discretization -> computational efficiency *

[rad]

- Reduces the number of optimization variables

- Reduces the number of equality constraints
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* Multirate Discrete Mechanics and Optimal Control (Multirate DMOC):
High fidelity simulation at a reduced computational cost
v’ Structure-preserving -> conservation of energy and/or momenta of the system
v' Multirate discretization -> computational efficiency

v Unified control methodology -> potential improvement in optimality and constraint-
handling capabilities *

*For comparison see: M. Azadi, M. Eghtesad, S. Fazelzadeh, and E. Azadi, “Dynamics and control of a smart flexible satellite moving
in an orbit,” Multibody System Dynamics, Vol. 35, No. 1, 2015, pp. 1-23.
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* Multirate Discrete Mechanics and Optimal Control (Multirate DMOC):

High fidelity simulation at a reduced computational cost
v’ Structure-preserving -> conservation of energy and/or momenta of the system
v' Multirate discretization -> computational efficiency

v Unified control methodology -> potential improvement in optimality and constraint- handling
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v" No need for decoupling of the equations of motion -> simple application to a variety
of linear and nonlinear models*
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* Multirate Discrete Mechanics and Optimal Control (Multirate DMOC):

High fidelity simulation at a reduced computational cost

v

v

Structure-preserving -> conservation of energy and/or momenta of the system
Multirate discretization -> computational efficiency

Unified control methodology -> potential improvement in optimality and constraint- handling
capabilities*

No need for decoupling of the equations of motion -> simple application to a variety of
linear and nonlinear models*

Straightforward selection of slow and fast subsystems -> capability to tailor the
solution to the time scales present in the problem to obtain further reductions in
computational cost*

*For comparison see: M. Azadi, M. Eghtesad, S. Fazelzadeh, and E. Azadi, “Dynamics and control of a smart flexible satellite moving

in an orbit,” Multibody System Dynamics, Vol. 35, No. 1, 2015, pp. 1-23.
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* Multirate Discrete Mechanics and Optimal Control (Multirate DMOC):

High fidelity simulation at a reduced computational cost

v

v

Structure-preserving -> conservation of energy and/or momenta of the system
Multirate discretization -> computational efficiency

Unified control methodology -> potential improvement in optimality and constraint- handling
capabilities

No need for decoupling of the equations of motion -> simple application to a variety of
linear and nonlinear models

Straightforward selection of slow and fast subsystems -> capability to tailor the solution

to the time scales present in the problem to obtain further reductions in computational
cost
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Mathematical model ) OXFORD

S
* General linear model neglecting dissipation effects NG "
- single-axis rest-to-rest rotational maneuver . “f,‘;’,,,;;;,ﬂ';,«»-;@m
- control torque applied at the hub f
* Spatial discretization - The Assumed Modes Method’ \ Rk
N E\.A6
w(z,t) =Y ¢;(z)n;(t), = €l0,L] T
j=1
¢; - assumed spatial mode shapes N - number of modes retained in the approximation
n; - time varying modal amplitudes L - length of the beam

» System description’

E(§,§)—%§TM§—%_TK§, SW =66 =706
3 ; b
0 L&, &) dt+ / (f-0€) dt = 0 for all variations 6§ with 6§(to) = 0§(ty) =0
to to

M{+K¢{=Dr, M= 1, K= , D=][1,0,...,0
-2 =0 [Me,, M,, 0 Ky [ |
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transformation to
modal coordinates”’

- /i wi 0
ETME =1, ETKE = A,
I A= s
| w1 Sw2 < ... < WNH1, 0 W,
+
— e — — T — — — —— e e e e — — — — — — — — — —
Table 1: Structural parameters used for the simulations Table 2: Natural frequencies
Hub radius R 1.0 ft wy | 0 rad/s
Hub rotary inertia Jh, 8.0 slug-ft2 wo | 6.454 rad/s
Tip mass my 0.156941 slug w3 | 52.41 rad/s
Tip mass rotary inertia | J; 0.0018 slug-ft? wy | 1.607 x 102 | rad/s
Beam length L 4.0 ft ws | 3.381 x 102 | rad/s
Beam height h 6.0 in. 2
Beam thickness t 0.125 in. Wy || 218 w40 adls
Beam linear density pA | 0.0271875 slug/ft
Beam elastic modulus | £ | 0.1584x10'° | Ib/ft? N =5
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Multirate formulation 2} OXFORD

11 wy = 0 rad/s
q2 q =——> wy=6.454rad/s

a3 8 w3 = 52.41 rad/s

27 q4 wy = 1.607 x 102 rad/s
qs qf — w5 = 3.381 x 102 rad/s
a6 = we = 5.78 x 102 rad/s

2 = 2 =
i 2 2 i 2 2
where Ag = diag(wy, ... ,w3), Af = diag(wg, ... ,w§)
micro time grid £ A T th =0 grologm e 2
I o o o I I I ° o o I e o o I I I o o o I
| | — |
macro time grid tr_1 AT tr At trt1

macro time step AT

micro time step At 10
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Multirate formulation ) OXFORD

a1 wy = 0 rad/s
q2 q —— wy=6.454rad/s
% } = w3 = 52.41 rad/s
4 qa wy = 1.607 x 102 rad/s
gqs } qf —  ws = 3.381 x 102 rad/s
| g6 | — we = 5.78 x 102 rad/s

L7 e : L s :
Lo _( (gs)Tgs _ (QS)TAS gs) + _( (i)Tgf — (gf)TAf gf)
2 2
where Ag = diag(w?, ... ,w3), Af = diag(w?, ... ,wd)

Discrete approximation
of the Lagrangian

Discrete Lagrange- Discrete equations

d’Alembert principle of motion

Discrete approximation
of the virtual work
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Forward simulation without control [IS%ESS
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Figure 1: Numerical dissipation of total energy Figure 2: Momentum preservation for simula-

for simulations with At = 10~% and ¢ 7 = 60s tions with At = 10~* and ¢ 7 =60s

oL : .
Po=—z = Moo 0 + (Mpn)" 1
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Optimal control problem formulation FEIS%sS:

Jau) = [ Clav.u®)dt =5 [ 12OTW(O) + u(t) i

subject o < Q(tf) e a E—l gtf’ étf = [Otf’ O, ,O]T
i Q(t()) = Q(tf) — [07 ’O]T
where z(t) = Eg;] , w(t)=17(t), A= [_OA (I)] 5 RS {EQD] , W=1
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Example solution ‘%) GXFORD
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Figure 3: OCP solution with Multirate DMOC for 6;, = 20°, ty = 4.5s, At = 103andp=5
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Problem size

micro time grid

macro time grid
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macro time step AT
micro time step At

AT At
<€ > —>
p=2
. | | | . -
4 g5 g3 4y g5 6 a7
p=3
I R N | | I I o
4 g5 g3 4y qs
p=25
I I R | I N N -
9 g5 g3
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Neq con - NUMber of equality constraints
Nslow var - NUMber of optimization variables resulting from discretization on the macro grid

N fast var - NUMber of optimization variables resulting from discretization on the micro grid

Ntotal var = Nslowvar T N fastvar

x10% x10*
6r X
-neq con B fast var
-ntota.l var -nslow var
1 3 5 9 15 9 15
p p

Figure 4: Size of OCP based on Multirate DMOC for a simulations with At = 1073 and ¢ f=4.5s
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Main result- the trade-off 2 OXFORD
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Figure 5: Mean computational time with standard deviation and relative error in £ versus p for a
constant micro time step of 1073, ¢ f=4.5s and 0, ;= 20°
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Figure 5: Mean computational time with standard deviation and relative error in £ versus p for a
constant micro time step of 1073, ¢ f=4.5s and 0, ;= 20°
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Further customization

qs = Rrxl
qf = R(N+1—'r)xl
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r - degrees of freedom of the slow subsystem

so far in the examples r =3, N =5

Ntotal var = Nslow var T M fast var

t
nslowvar(pa r, N, ty, At) =2r (—f T 1)

t t
nfastva‘r(r, N, tf,At) =2 (N +1— r)(—f + 1> q ' i3

f
|
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Figure 6: Mean computational time with stan-
dard deviation versus p for a constant micro
time step of 1073, ty =4.5sand 0, = 20°
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Figure 7: Relative error in £ versus p for a con-

stant micro time step of 16_3, ty = 4.5s and



Conclusions

* Multirate Discrete Mechanics and Optimal Control (Multirate DMOC):
High fidelity simulation at a reduced computational cost
v’ Structure-preserving -> conservation of energy and/or momenta of the system

v' Multirate discretization -> computational efficiency

v Unified control methodology -> potential improvement in optimality and constraint- handling
capabilities

v" No need for decoupling of the equations of motion -> simple application to a variety of
linear and nonlinear models

v’ Straightforward selection of slow and fast subsystems -> capability to tailor the solution

to the time scales present in the problem to obtain further reductions in computational
cost

Flexibility to tailor the method to the time scales of the problem and obtain the
required fidelity at a reduced computational cost!

* Future work — methods for obtaining optimal p and r and extending the work to models

including kinematic nonlinearities and dissipation effects
20
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