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2 Introduction

1 Introduction

Model Predictive Control (MPC) is an optimal control strategy based on nu-

merical optimization. Future control inputs and future plant responses are

predicted using a system model and optimized at regular intervals with respect

to a performance index. From its origins as a computational technique for im-

proving control performance in applications within the process and petrochem-

ical industries, predictive control has become arguably the most widespread

advanced control methodology currently in use in industry. MPC has a sound

theoretical basis and its stability, optimality, and robustness properties are well

understood.

Despite being very simple to design and implement, MPC algorithms can con-

trol large scale systems with many control variables, and, most importantly,

MPC provides a systematic method of dealing with constraints on inputs and

states. Such constraints are present in all control engineering applications

and represent limitations on actuators and plant states arising from physical,

economic, or safety constraints. In MPC these constraints are accounted for

explicitly by solving a constrained optimization problem in real-time to deter-

mine the optimal predicted inputs. Nonlinear plant dynamics can be similarly

incorporated in the prediction model.

This course covers the basic principles of model predictive control, considering

its theoretical properties and implementation issues. The main emphasis of

the course is on the design of cost and constraints and analysis of closed-

loop properties. Connections with unconstrained optimal control, Lyapunov

stability theory and optimization problems are investigated. Extensions relating

to set point tracking, robustness to disturbances and nonlinear dynamics are

considered.

Please send corrections or suggestions to mark.cannon@eng.ox.ac.uk

Web pages: weblearn.ox.ac.uk

markcannon.github.io/teaching

https://weblearn.ox.ac.uk/portal
https://markcannon.github.io/teaching
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1.1 Objectives

At the end of the course you should be able to do the following:

• Understand the advantages of receding horizon control, its limitations and

areas of application.

• Know how to formulate receding horizon control as:

(a). fixed-term feedback controller (for unconstrained linear systems);

(b). a quadratic program (for linearly constrained linear systems);

(c). a nonlinear program (general case).

• Understand and know how to determine the stability properties of a pre-

dictive controller in terms of:

(a). recursive feasibility guarantees;

(b). monotonic cost decrease through optimization.

• Know how to design terminal constraints through a constraint checking

horizon.

• Know how to incorporate integral action.

• Know how to ensure robustness to bounded disturbances.

1.2 Books

1. Kouvaritakis, B. and Cannon, M. Model Predictive Control: Classical,

Robust and Stochastic. Springer, 2015.

Recommended reading: Chapters 1, 2 and 3.

2. Rawlings, J.B. and Mayne, D.Q. Model Predictive Control: Theory and

Design. Nob Hill Publishing, 2009.

3. Maciejowski, J.M.. Predictive control with constraints. Prentice Hall,

2002.

Recommended reading: Chapters 1-3, 6 and 8.
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1.3 Predictive control strategy 1

A model predictive control law contains the basic components of prediction,

optimization and receding horizon implementation. A summary of each of

these ingredients is given below.

1.3.1 Prediction

The future response of the controlled plant is predicted using a dynamic model.

This course is concerned mainly with the case of discrete-time linear systems

with state-space representation

xk+1 = Axk +Buk, (1.1)

where xk and uk are the model state and input vectors at the kth sampling

instant. Given a predicted input sequence, the corresponding sequence of state

predictions is generated by simulating the model forward over the prediction

horizon, of say N sampling intervals. For notational convenience, these pre-

dicted sequences are often stacked into vectors u,x defined by

uk =


u0|k

u1|k
...

uN−1|k

 , xk =


x0|k

x1|k
...

xN |k

 (1.2)

Here ui|k and xi|k denote input and state vectors at time k+i that are predicted

at time k (i.e. predictions of their values i steps ahead), and xi|k is governed

by the prediction model:

xi+1|k = Axi|k +Bui|k, i = 0, 1, . . . (1.3)

with initial condition (at the start of the prediction horizon) defined by

x0|k = xk.

1Reading: Kouvaritakis & Cannon Chap.1 and §2.1 or Maciejowski Chap.1.
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1.3.2 Optimization

The predictive control feedback law is computed by minimizing a predicted

performance cost, which is defined in terms of the predicted sequences u,x.

This course is mainly concerned with the case of quadratic cost, for which the

predicted cost has the general form:

J(xk,uk) =
N∑
i=0

(
‖xi|k‖2

Q + ‖ui|k‖2
R

)
(1.4)

where ‖x‖2
Q = x>Qx and Q,R are positive definite matrices (Q may be

positive semi-definite). The optimal control sequence for the problem of mini-

mizing the predicted cost is denoted u∗k(xk), and the optimal value of the cost

is J∗(xk) = J(xk,u
∗
k), which is often written as J∗k for simplicity:

u∗k(xk) = arg min
uk

J(xk,uk)

J∗k = J∗(xk) = J(xk,u
∗
k) = min

uk
J(xk,uk).

If the system is subject to input and state constraints, then these could be

included in the optimization as constraints on uk.

1.3.3 Receding horizon implementation

Only the first element of the optimal predicted input sequence u∗k is input to

the plant:

uk = u∗0|k. (1.5)

The process of computing u∗k by minimizing the predicted cost and imple-

menting the first element of u∗k is then repeated at each sampling instant

k = 0, 1, . . .. For this reason the optimization defining u∗k is known as an

online optimization.

The prediction horizon remains the same length despite the repetition of the

optimization at future time instants (Fig. 1), and the approach is therefore

known as a receding horizon strategy.

Since the state predictions xk and hence the optimal input sequence u∗k depend

on the current state measurement xk, this procedure introduces feedback into
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Figure 1: The receding horizon strategy

the MPC law, thus providing a degree of robustness to modelling errors and

uncertainty. A second feature of the receding horizon approach is that, by

continually shifting the horizon over which future inputs are optimized, it at-

tempts to compensate for the fact that this horizon is finite. This can be seen

in Fig. 2, which illustrates that the predicted response may differ significantly

from the closed-loop response. Provided the cost and constraints are designed

correctly, a receding horizon strategy can ensure that the performance of the

closed-loop system is at least as good as that of the optimal prediction.

1.3.4 Historical development

The MPC strategy has been discovered and re-invented several times. Reced-

ing horizon approaches were used in the 1960s and 70s to define computational

methods for optimal control problems that have no closed-form solution. Pre-

dictive control reappeared in the entirely different context of industrial process

control in the 1980s as a means of exploiting continual improvements in com-

putational resources to improve performance. More recently the approach has

been used as a general technique for deriving stabilizing controllers for con-

strained systems. At the same time, the availability of faster computers and

improvements in computational efficiency of predictive controllers (including
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Figure 2: Closed-loop responses and responses predicted at k = 0 for an

unconstrained 2nd order system with horizon N = 3.

nonlinear and robust MPC schemes) have extended its range of applications

to include fast sampling systems.

1.4 Prediction model

A very wide class of plant model can be incorporated in a predictive control

strategy. This includes linear, nonlinear, discrete and continuous-time models.

Prediction models may be deterministic, stochastic, or fuzzy.

1.4.1 Linear plant model

For linear systems, the dependence of predictions xk on uk is linear. A

quadratic predicted cost such as (1.4) is therefore a quadratic function of

the input sequence uk. Thus J can be expressed as a function of u in the
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form

J(xk,uk) = u>kHuk + 2f>uk + g (1.6)

where H is a constant positive definite (or possibly positive semidefinite) ma-

trix, and f = f(xk) and g = g(xk) are respectively a vector and a scalar

which depend on xk. Linear input and state constraints likewise imply linear

constraints on uk which can be expressed

Acuk ≤ bc (1.7)

where Ac is a constant matrix and the vector bc = bc(xk) is in general a function

of xk. The online MPC optimization therefore comprises the minimization over

u of a quadratic objective subject to linear constraints:

minimize
u

u>Hu + 2f>u (1.8a)

subject to Acu ≤ bc (1.8b)

This class of optimization problem is known as a quadratic programming (QP)

problem, and given that H is a positive definite matrix and the constraints are

linear, it is easy to show that (1.8a,b) is a convex problem (i.e. both the ob-

jective (1.8a) and constraints (1.8b) are convex functions of the optimization

variable u). It can be solved efficiently and reliably using specialized algo-

rithms. For example Matlab’s QP solver (quadprog) running on a 2.3 GHz

quadcore processor with 16 GB memory typically needs around 2 ms to solve

problems involving 10 variables and 100 constraints. Commercial solvers that

are optimized for speed can provide typical solution times for this problem of

the order of 1 ms.

1.4.2 Nonlinear plant model

If a nonlinear prediction model is employed, then due to the nonlinear depen-

dence of the state predictions xk on uk, the MPC optimization problem is

significantly harder than for the linear model case. This is because the cost

in equation (1.4), which can be written as J(uk, xk), and the constraints,
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g(uk, xk) ≤ 0, are in general nonconvex functions of uk, so that the optimiza-

tion problem:

minimize
u

J(xk,u) (1.9a)

subject to g(xk,u) ≤ 0 (1.9b)

becomes a nonconvex nonlinear programming (NLP) problem.

As a result there will in general be no guarantee that a solver will converge to a

global minimum of (1.9), and the times required to find even a local solution are

typically orders of magnitude greater than for QP problems of similar size. For

example, to solve the MPC optimization derived from an inverted pendulum

control problem with 10 variables in u, solution times of 10 sec are typically

needed on a 2GHz PC. Unlike QP solvers, the computational loads of solvers

for nonlinear programming problems are strongly problem-dependent.

1.4.3 Discrete and continuous-time prediction models

In a typical MPC implementation, the online optimization is solved periodically

at times t = kT , k = 0, 1, . . ., and for each k, the control law u = u∗0|k is

implemented until the solution of the optimization at t = (k + 1)T becomes

available. Clearly therefore, T has to be at least as large as the computation

time required to perform the online optimization, and ideally T should be very

much larger than this if the computation delay is not accounted for explicitly

in predictions. However this constraint does not apply to the choice of the

sampling interval for a discrete-time prediction model, which could be dictated

by other considerations (e.g. the bandwidth of the plant or disturbance signals).

In fact it is possible to use a model sampling interval, Tsamp, which is smaller

than T provided that:

Tsamp = T/m, for integer m.

This condition makes it possible for the previously computed optimal predicted

input sequence to be used at current time if necessary (see Fig. 3), which in

turn allows for a guarantee of stability and convergence of the MPC strategy, as
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will be discussed in Section 3. For simplicity a discrete-time prediction model

with Tsamp = T will be assumed in these notes.

Figure 3: Input predictions at successive optimization times for the case that

T = 2Tsamp.

Note that it is also possible to use continuous-time prediction models in MPC

provided that, when performing the optimization to determine the current op-

timal trajectory, it is always possible to implement the previously computed

optimal trajectory. The use of continuous-time prediction models is desir-

able when the plant dynamics have no closed-form discrete-time representa-

tion, which is often the case for nonlinear systems with phenomenological

(i.e. physics-based) models. Specialized algorithms incorporating numerical

integration of continuous-time prediction models are available for solving the

online optimization.

1.5 Constraint handling

In addition to the obvious equality constraints that the state and input should

satisfy the model dynamics, inequality constraints on input and state variables

are encountered in every control problem. While the equality constraints are

usually handled implicitly (i.e. the plant model is used to write predicted state

trajectories as functions of initial conditions and input trajectories), the inequal-

ity constraints are imposed as explicit constraints within the online optimization

problem. This course is concerned with linear inequality constraints.
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Input constraints. These can have the form of absolute constraints, i.e.

u ≤ uk ≤ u (1.10)

or rate constraints:

4u ≤ uk − uk−1 ≤ 4u. (1.11)

Input constraints commonly arise as a result of actuator limits, e.g. torque

saturation in d.c. motors and flow saturation in valves.

State constraints. Linear state and input constraints have the general form

Fcxk +Gcuk ≤ hc (1.12)

where Fc, Gc are constant matrices and hc is a constant vector. State con-

straints may be active during transients (e.g. aircraft stall speed) or in steady-

state operation (e.g. economic constraints on process operation).

Hard/soft constraints. Constraints are classified as either hard or soft.

Hard constraints must always be satisfied, and if this is not possible the problem

is infeasible. On the other hand, soft constraints may be violated if necessary

to avoid infeasibility. This course will only consider hard constraints.

We next give brief descriptions of several common methods of handling input

constraints. It is possible to enforce satisfaction of input constraints simply by

saturating the unconstrained controller ufree, e.g. by defining

uk =

min{ufree, u} if ufree ≥ 0

max{ufree, u} if ufree < 0

However, if constraints are ignored in the design of ufree, then the saturated

control law is likely to give poor closed-loop responses and may lead to insta-

bility. For example, Figure 4 shows the characteristically slow and oscillatory

step responses of linear system to a saturated linear feedback law, which was

designed to be LQ-optimal for the unconstrained system. In this example the



12 Introduction

0 5 10 15 20 25 30 35 40
−2

0

2

4

6

8

u

0 5 10 15 20 25 30 35 40
−4

−2

0

2

4

6

y

sample

saturated lqr
unconstrained lqr

Figure 4: Step response of saturated linear controller (LQ-optimal feedback).

system has model and constraints:

xk+1 =

[
1.1 2

0 0.95

]
xk +

[
0

0.0787

]
uk, yk =

[
−1 1

]
xk

−1 ≤ uk ≤ 1

The performance index

∞∑
k=0

[
y2
k +Ru2

k

]
, R = 0.01.

therefore gives the unconstrained LQ-optimal controller as:

uk = Kxk, K =
[
−4.3608 −18.7401

]

1.5.1 De-tuned optimal control

It may be possible to account for input constraints by increasing the input

weighting R in the LQ performance cost until the associated optimal feedback



1.5 Constraint handling 13

0 10 20 30 40 50 60
−2

0

2

4

6

y

sample

0 10 20 30 40 50 60
−2

0

2

4

6

8

u
lqr, R=1000
lqr, R=0.01

Figure 5: Step response of detuned LQ-optimal feedback law.

law satisfies constraints in the desired operating region. This approach is

clearly suboptimal in terms of the original performance index and can lead to

very slow closed-loop responses. For example Fig. 5 shows the step response

of the system of Fig. 4 when R is chosen to be large enough (R = 1000) that

constraints are satisfied by the unit step response.

Figure 6: Block diagram of anti-windup proportional + integral controller.
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1.5.2 Anti-windup strategies

Anti-windup methods aim to prevent the instability that can occur in con-

trollers which incorporate integral action when input constraints are active.

An example is the anti-windup PI controller shown in Figure 6. To avoid the

degradation of performance that results when the integrated error term be-

comes large while the input is saturated, this uses a modified control law:

u = sat(Ke+ v),

Tiv̇ + v = u.

[Here the saturation block ensures that u(t) remains at all times within limits,

and it is clear from the transfer function from e to u in Fig. 6 that

u(t) = K

(
e(t) +

1

Ti

∫ t

e dt′
)

whenever u < u(t) < u. On the other hand, if u lies on either its upper or

lower limit, then v(t) converges (exponentially) to u or u, and u(t) therefore

becomes unsaturated quickly after a subsequent change in the sign of e(t).

Although relatively easy to implement, this approach does not have an obvious

extension to systems with more than one input and output, and provides no

guarantees of stability or performance.]

1.5.3 Model predictive control

Applying predictive control to the example used to generate Figures 4 and 5

leads to the responses shown in Figure 7. Although the MPC optimization

employs a finite number of degrees of freedom in predicted input sequences,

in this case the resulting control law is optimal for the infinite horizon problem

(this will be shown in Section 3). Of course the price of optimality is the

online solution of a QP, which constitutes an enormous increase in computation

relative to simple anti-windup or saturation approaches.
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Figure 7: Step response of constrained MPC law.

Summary of Section 1

• MPC is a feedback law based on prediction, optimization, and receding

horizon implementation. The optimization is performed over open-loop

predictions, which are based on a plant model.

• Constraints on system inputs and states can be hard or soft. Constraints

are handled sub-optimally using de-tuned optimal control or anti-windup

strategies whereas MPC enables constraints to be handled optimally.
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2 Prediction and optimization

2.1 Prediction equations 2

This section derives an expression for the predicted state trajectory xk in

terms of the predicted input trajectory uk. This expression allows the gen-

eral quadratic cost:

J(xk,uk) =
N−1∑
i=0

(
‖xi|k‖2

Q + ‖ui|k‖2
R

)
+ ‖xN |k‖2

Q
(2.1)

to be written as a quadratic function of uk in the form (1.6). Note that uN |k

is omitted from (2.1) since no other terms in the cost, J , depend on uN |k.

Furthermore it is possible (and in fact desirable) to use a different weighting

matrix Q in the term involving the terminal predicted state xN |k. By choosing

an appropriate value for Q, this allows the cost over an infinite prediction to

be accounted for in J (under certain assumptions on ui|k, i = N,N + 1, . . .),

as we discuss in Section 2.3.

The predicted state sequence generated by the linear state-space model (1.3)

with input sequence uk can be written

x0|k = xk

x1|k = Axk +Bu0|k

x2|k = A2xk + ABu0|k +Bu1|k
...

In compact notation:

xk =Mxk + Cuk,

M =


I

A

A2

...

AN

 , C =


0 0 · · · 0

B

AB B
...

... . . .

AN−1B AN−2B · · · B

 .
(2.2)

2Reading: Kouvaritakis & Cannon §2.3, Maciejowski §2.6.
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Re-writing (2.1) in terms of xk and uk gives

J = x>k Q̃xk + u>k R̃uk

with

Q̃ =


Q

. . .

Q

Q

 and R̃ =

R . . .

R

 .
Substituting for xk using (2.2) and collecting terms (try this yourself) gives:

J = u>kHuk + 2x>k F
>uk + x>kGxk (2.3)

where
H = C>Q̃C + R̃

F = C>Q̃M

G =M>Q̃M.

(2.4)

Note that matrices H, F , and G can be computed offline.

Example 2.1. For the 2nd order system considered in Section 1, with

A =

[
1.1 2

0 0.95

]
, B =

[
0

0.0787

]
, C =

[
−1 1

]
for N = 4 the convolution matrix C is given by

C =



0 0 0 0

0 0 0 0

0 0 0 0

0.0787 0 0 0

0.1574 0 0 0

0.0748 0.0787 0 0

0.3227 0.1574 0 0

0.0710 0.0748 0.0787 0

0.4970 0.3227 0.1574 0

0.0675 0.0710 0.0748 0.0787
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so that the cost with Q = C>C, R = 0.01, and Q = Q is given by (2.3) with

H =


0.2708 0.1224 0.0157 −0.0338

? 0.0863 0.0143 −0.0198

? ? 0.0230 −0.0065

? ? ? 0.0162

 , F =


0.9772 4.9253

0.3832 2.1739

0.0162 0.2189

−0.1152 −0.6175


G =

[
7.5892 22.7765

? 103.6836

]
(where ? indicates an element of a symmetric matrix). ♦

2.1.1 LTV prediction models

The above formulation applies to systems with linear time-varying models:

xk+1 = Akxk +Bkuk.

In this case the state predictions can be written3

xi|k =
0∏

j=i−1

Ak+jxk + Ci(k)uk i = 0, . . . , N

and

C0(k) = 0

Ci(k) =

[
1∏

j=i−1

Ak+jBk

2∏
j=i−1

Ak+jBk+1 · · · Bk+i−1 0 · · · 0

]
and the cost (2.1) is a quadratic function of uk: J = u>kHkuk + 2x>k F

>uk +

x>kGkxk, with Hk, Fk, and Gk defined by expressions similar to (2.4). Unlike

the LTI case, the cost matrices Hk, Fk, Gk are time-varying and should in

general be computed online.

2.2 Unconstrained optimization 4

If there are no inequality constraints, the optimization u∗k = arg minuk J(xk,uk)

has a closed-form solution which can be derived by considering the gradient of

3Here
∏0

j=i−1Ak+j = Ak+i−1 · · ·Ak+1Ak for i ≥ 1, and
∏0

j=i−1Ak+j = 0 for i = 0.
4Reading: Kouvaritakis & Cannon §2.2 and §2.3, Maciejowski §3.1.
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J with respect to u:

∇uJ = 2Hu + 2Fx.

Clearly ∇uJ = 0 must be satisfied at a minimum point of J , and since H

is positive definite (or positive semidefinite) any u such that ∇uJ = 0 is

necessarily a minimum point. Therefore the optimal u∗ is unique only if H is

nonsingular and is then given by5

u∗k = −H−1Fxk. (2.5)

If H is singular (i.e. positive semidefinite rather than positive definite), then

the optimal u∗k is non-unique, and a particular solution of ∇uJ = 0 has to be

defined as u∗k = −H†Fxk where H† is a left inverse of H (i.e. H†H = I).

Applying the first element of the minimizing control sequence to the system

at each sampling instant defines the receding horizon control law uk = u∗0|k.

Since H and F are constant, this is a linear time-invariant feedback controller

uk = Lxk, where the gain matrix L is the first row of −H−1F for the single-

input case (the first nu rows if u has dimension nu), i.e.

uk = u∗0|k = Lxk, L = −
[
Inu 0 · · · 0

]
H−1F. (2.6)

Example 2.2. For the system considered in example 2.1, the optimal predicted

input sequence for the cost with horizon N = 4 and weights Q = C>C,

R = 0.01, Q = Q is obtained by substituting H and F into (2.5):

u∗k = −H−1Fxk =


−4.3563 −18.6889

1.6383 1.2379

1.4141 2.9767

0.5935 1.8326

xk.
The corresponding receding horizon control law is therefore a fixed linear feed-

back controller:

uk = −
[
1 0 0 0

]
H−1Fxk = Lxk L =

[
−4.3563 −18.6889

]
.

5Sufficient conditions for H to be non-singular are for example that R > 0 or that Q,Q > 0 and

the pair (A,B) is controllable.
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Figure 8 shows the predicted response at k = 0 and the closed-loop response

for initial condition x0 = (0.5,−0.5). ♦
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Figure 8: Predicted and closed-loop responses for example 2.2 with N = 4.

2.2.1 Horizon length and performance

The linear feedback form of (2.5) is to be expected since u∗k is the solution of

a Linear-Quadratic (LQ) optimal control problem. However, unlike the infinite

horizon LQ optimal control problem (see B15 Lecture Notes), for which there

is no difference between the optimal predicted input sequence and its receding

horizon implementation in the absence of disturbances and model errors, there

can be significant discrepancy between the predictions of (2.5) and closed-loop

responses with the receding horizon controller (2.6). This discrepancy tends

to increase as the horizon is reduced, as the example below shows.

Example 2.3. The table below gives the linear feedback gain L and the cor-

responding closed-loop poles (i.e. the eigenvalues of A + BL) as the horizon

N is reduced for the system of example 2.2. Predicted responses at k = 0
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and closed-loop responses for initial condition x0 = (0.5,−0.5) are shown in

Figures 9 and 10.

N = 4 N = 3 N = 2 N = 1

L
[
−4.36 −18.69

] [
−3.80 −16.98

] [
1.22 −3.95

] [
5.35 5.10

]
λ(A+BL) 0.29± 0.17j 0.36± 0.22j 1.36, 0.38 2.15, 0.30

♦

0 2 4 6 8 10
−5

0

5

10

u

0 2 4 6 8 10
−1

−0.5

0

0.5

1

sample, k

y

closed−loop
predicted

Figure 9: Predicted and closed-loop responses for N = 3.

2.3 Infinite horizon cost 6

Because of the difference between predicted and closed-loop responses, there

is no guarantee that a receding horizon controller based on a finite-horizon cost

will achieve the optimal predicted performance in closed-loop operation. In fact

the closed-loop system may even be unstable. This can be seen in the previous

example, where the closed-loop poles lie outside the unit circle if N < 3. The

cause of instability here becomes clearer if the predictions at each time k are

6Reading: Kouvaritakis & Cannon §2.2, §2.3 and §2.6, Maciejowski §6.2.
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Figure 10: Predicted and closed-loop responses for N = 2.

compared with the closed-loop response (Fig. 11). The use of a short-sighted

objective leads to optimal predictions that continually underestimate the need

to force the outputs that lie further into the future to zero. This behaviour is

common to (but not limited to) non-minimum phase systems, for which the

predicted tracking errors must in general increase initially in order to allow for

a decrease later in the prediction horizon.7

This problem is avoided entirely if performance is evaluated over an infinite

prediction horizon, i.e. if the cost is defined as

J(xk,uk) =
∞∑
i=0

(
‖xi|k‖2

Q + ‖ui|k‖2
R

)
. (2.7)

To make sure that the problem of minimizing this cost is tractable, it is then

necessary to define the predicted input sequence over the infinite prediction

horizon in such a way that the number of free variables in the MPC optimization

7For example the response of aircraft altitude to changes in elevator angle is non-minimum phase

since moving the elevator so as to bring the plane’s nose up and hence gain height results in an initial

loss of altitude.
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Figure 11: Closed-loop responses and predicted responses at k = 0, 1, . . . , 8

for N = 2.

remains finite. A convenient means of achieving this (which in Section 3 will

be shown to be optimal under certain conditions) is through the dual mode

predictions:

ui|k =

{
optimization variables i = 0, 1, . . . , N − 1 (mode 1)

Kxi|k i = N,N + 1, . . . (mode 2)

(2.8)

Here mode 1 refers to an initial horizon of N samples over which the predicted

inputs are variables in the MPC optimization. On the other hand, inputs are

defined by a stabilizing feedback law (u = Kx) over the remaining infinite

horizon of mode 2 (Fig. 12).

For the dual mode input predictions (2.8), an infinite horizon cost need only

be evaluated explicitly over mode 1 since J(xk,uk) can be re-written in the

form of (2.1). This is done by choosing the terminal weighting matrix Q

so that the term x>N |kQxN |k is equal to the cost over the mode 2 prediction
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Figure 12: Dual mode input predictions.

horizon, which is achieved by specifying Q as the solution of the Lyapunov

equation:

Q− (A+BK)>Q(A+BK) = Q+K>RK, (2.9)

as shown below.

Theorem 2.1 (Terminal weighting matrix). Along closed-loop trajectories

of the model (1.1) under the feedback law uk = Kxk, the infinite horizon

quadratic cost is given by:

∞∑
i=0

(
‖xi‖2

Q + ‖ui‖2
R

)
= x>0 Qx0 (2.10)

where Q satisfies (2.9).

To prove this result, first pre- and post-multiply (2.9) by x>i and xi:

‖xi‖2
Q
− ‖(A+BK)xi‖2

Q
= ‖xi‖2

Q + ‖Kxi‖2
R.

Defining V (x) = x>Qx, and using ui = Kxi, xi+1 = (A + BK)xi, this is

equivalent to

V (xi)− V (xi+1) = ‖xi‖2
Q + ‖ui‖2

R,

Summing this equation over i = 0, 1, . . . therefore gives

V (x0)− lim
k→∞

V (xk) =
∞∑
i=0

(
‖xi‖2

Q + ‖ui‖2
R

)
,
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but V (xk) = ‖(A + BK)kx0‖2
Q
→ 0 as k → ∞ due to the assumption that

(A+BK) is stable. Therefore

V (x0) =
∞∑
i=0

(
‖xi‖2

Q + ‖ui‖2
R

)
,

which implies (2.10) since V (x0) = x>0 Qx0.

Note that:

1. The Lyapunov equation (2.9) has a (unique) solution for Q if and only if

the eigenvalues of A + BK lie inside the unit circle, since this condition

is necessary and sufficient for convergence of the infinite sum in (2.10).

2. It is easy to show that Q is positive definite if either Q+K>RK > 0 or

Q = C>C where (A+BK,C) is observable.

3. From (2.10) it is clear that (2.1) is equal to the infinite horizon cost (2.7).

2.3.1 The relationship between unconstrained MPC and LQ optimal

control

The obvious choice for the mode 2 feedback gain K is the LQ optimal gain

for the cost (2.7), since this gives optimal predicted performance over mode 2.

Due to the optimality of predictions over both modes 1 and 2, the optimal

predicted trajectory u∗ in (2.5) is then necessarily identical to the infinite

horizon optimal input sequence:

u∗k =


K

K(A+BK)
...

K(A+BK)N−1

xk,
implying that the receding horizon control law (2.6) is in fact equal to the LQ

optimal feedback law u = Kx. This result should not be surprising since

the model and cost are the same for MPC and LQ optimal control, here

MPC simply provides an alternative method of determining the optimal control

law.
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Example 2.4. For the model and cost weights Q,R considered in example 2.2,

the LQ optimal gain is K =
[
−4.36 − 18.74

]
. The solution of the Lyapunov

equation (2.9) for Q and the corresponding H,F,G in (2.4a,b) for N = 4 are

given by

Q =

[
3.9153 4.8269

4.8269 13.8564

]
, G =

[
13.8384 66.6933

66.6933 413.1200

]

H =


1.4402 0.9840 0.5870 0.2624

0.9840 0.7218 0.4363 0.2000

0.5870 0.4363 0.3043 0.1413

0.2624 0.2000 0.1413 0.0958

 , F =


3.6741 23.9448

2.3664 16.1810

1.3259 9.4964

0.5562 4.1784

 .
From (2.6), the receding horizon implementation of the optimal predicted input

sequence therefore defines the control law

uk = −
[
1 0 0 0

]
H−1Fxk =

[
−4.3608 −18.7401

]
xk

which is identical to the LQ optimal controller for the same cost. ♦

2.4 Incorporating constraints 8

The purpose of MPC is clearly not to emulate the unconstrained LQ optimal

controller, which after all is simply a linear feedback law that can be com-

puted offline using knowledge of the plant model. The real advantage of MPC

lies in its ability to determine nonlinear feedback laws which are optimal for

constrained systems through numerical calculations that are performed online

(i.e. in between samples). Having determined the quadratic cost as a function

of input predictions in sections 2.1 and 2.3, this section re-writes linear input

and state constraints:

u ≤uk ≤ u (2.11a)

x ≤xk ≤ x (2.11b)

in the form Acu ≤ bc, which is suitable for including in the problem of opti-

mizing J subject to constraints.

8Reading: Kouvaritakis & Cannon §2.4, Maciejowski §3.2.
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The input constraints (2.11a) are equivalent to uk ≤ u and −uk ≤ −u. These

constraints applied to mode 1 predictions, ui|k, i = 0, . . . , N−1, can therefore

be expressed in terms of uk as[
I

−I

]
uk ≤

[
1u

−1u

]
(2.12)

where 1 is a vector of ones for the single input case (or 1 =
[
Inu · · · Inu

]
for the case that u has dimension nu). Similarly, using (2.2), the state con-

straints (2.11b) applied to mode 1 predictions xi|k, i = 1, . . . , N are equivalent

to: [
Ci
−Ci

]
uk ≤

[
x

−x

]
+

[
−Ai

Ai

]
xk, i = 1, . . . , N. (2.13)

The combination of (2.11a,b) applied to mode 1 predictions can therefore be

expressed as constraints on uk of the form

Acuk ≤ b0 +Bxxk (2.14)

where Ac, b0, Bx are constant matrices that can be determined offline.

2.5 Quadratic Programming 9

Combining the objective function and constraints derived above, the optimiza-

tion of the infinite horizon cost (2.7) subject to constraints (2.14) requires the

solution of a QP problem:

minimize
u

u>Hu + 2x>k F
>u

subject to Acu ≤ b0 +Bxxk
(2.15)

Since H is positive (semi-)definite (as discussed in section 2.2), and since the

constraints are linear, this is a convex optimization problem which therefore

has a unique solution. This section outlines the two types of algorithm (active

set and interior point algorithms) commonly used to solve QP problems, but to

help explain these methods a general result of constrained optimization theory

is given first.10

9Reading: Kouvaritakis & Cannon §2.8, Maciejowski §3.3
10A full treatment of the theory of constrained optimization is beyond the scope of this course.

For a fuller discussion see e.g. the lecture notes for the C25 Optimization course.
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Theorem 2.2 (Optimization with equality constraints). If u∗ satisfies

u∗ = arg min
u

f(u)

subject to ci(u) = 0, i = 1, . . . ,m

(where f and ci are smooth functions), then scalars λ∗i , i = 1, . . . ,m exist

satisfying

∇uf(u∗) +
m∑
i=1

λi∇uci(u
∗) = 0 (2.16a)

ci(u
∗) = 0, i = 1, . . . ,m. (2.16b)

Condition (2.16a) is an extension of the gradient condition, ∇uf(u∗) = 0,

which must be satisfied at a minimum point of f(u) if u is unconstrained.

The addition of the second term simply ensures that f(u) cannot be reduced

by perturbing u∗ by an incremental distance in any direction for which the

constraint ci(u) = 0 remains satisfied. This is because (2.16a) forces the gra-

dient∇uf(u) to be normal in u-space to one or more of the constraint surfaces

ci(u) = 0 at u = u∗. The scalars λi are known as Lagrange multipliers.

Note that:

1. The condition in (2.16a) also applies to the case of inequality constraints,

ci(u) ≤ 0, but with extra conditions on the multipliers λi, namely λ∗i = 0

if ci(u
∗) < 0 and λ∗i ≥ 0 if ci(u

∗) = 0.

2. Problems with inequality constraints are generally harder to solve than

equality-constrained problems since only a subset of the constraints may

be active, or satisfied with equality, at the solution.

2.5.1 Active set algorithms

This kind of solver computes the solution of the QP optimization (2.15) by

solving a sequence of problems involving only equality constraints. Let a>i de-

note the ith row of Ac and bi the ith element of b0 +Bxxk, for i = 1, . . . ,m.
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Then an individual constraint a>i u ≤ bi is active at the solution if the cor-

responding multiplier is non-zero (i.e., if λ∗i > 0) and inactive if λ∗i = 0.

Inactive constraints can be removed from the problem without affecting the

solution (Fig. 13), and it follows that u∗ is also the solution of the equality

constrained problem:

minimize
u

u>Hu + 2x>k F
>u

subject to a>i u = bi, i ∈ A∗

where A∗ = {i : λ∗i > 0} is the set of active constraints at the solution

of (2.15). The solution of (2.15) can therefore be found by iteratively: (i) se-

lecting a possible combination of active constraints, (ii) solving the correspond-

ing equality constrained problem (by solving the linear equations (2.16a,b)),

and (iii) testing the optimality of the solution or the closest point to the so-

lution at which all of the inequality constraints are satisfied. Note that the

optimality of a trial solution can be determined from the associated Lagrange

multipliers (using the conditions given in point 1 above). Also the successive

active sets are chosen so as to make the objective function decrease at each

iteration, and well-designed active set solvers therefore manage to avoid testing

large numbers of possible combinations of active constraints.

2.5.2 Interior point QP algorithms

This approach solves an unconstrained problem:

minimize
u

µ{u>Hu + 2f>u}+ φ(u) (2.17)

at each iteration, where µ is a scalar and φ(u) is a barrier function which

is finite whenever u satisfies constraints but which tends to infinity as u ap-

proaches a constraint boundary. For constraints a>i u ≤ bi, the barrier function

could, for example, be defined as φ(u) =
∑m

i=1− log(bi − a>i u), and the so-

lution of (2.17) for any given µ therefore necessarily satisfies constraints. It

can also be shown that the solution of (2.17) tends to u∗ as µ → ∞ (see

for example Fig. 14, for which u∗ = 1). Interior point methods therefore in-

crease µ over successive iterations until constraints are met to within a given

tolerance.
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Figure 13: Upper: QP problem with 5 inequality constraints. Only constraint

2 is active at the solution. Lower: Minimizing the same function subject to

constraint 2 alone yields the same solution. The ellipses are contours of the

objective function and the unconstrained minimum is marked ’∗’.
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Figure 14: Interior point iteration for a scalar example. Solid line: barrier
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function J(u). Dashed-dotted lines: µJ(u) + φ(u) plotted for µ = 0.5, 1, 2.

Minimum points u(µ) for µ = 0.5, 1, 2 are marked ’+’.

The interior point approach has a lower computational load for large-scale

problems involving hundreds of optimization variables. Unlike active set solvers

however, it is not possible to initialize the iteration at an estimate close to the

actual solution because the corresponding value for µ is unknown. This can be

a big disadvantage in predictive control, where a good estimate of the current

optimal control sequence can usually be determined from the solution of the

optimization problem computed at the previous sampling instant.
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Summary of Section 2

• A linear discrete-time plant model enables the future predicted states

to be determined as linear functions of the vector of future inputs uk.

Therefore a quadratic performance index J is a quadratic function of

u, and linear constraints on inputs and states are equivalent to linear

constraints on u.

• To improve closed-loop performance of MPC, the horizon over which

the cost J is evaluated should be extended to infinity. Assuming dual

mode predictions (where the predicted future inputs ui|k are defined by

a linear state feedback controller for all i ≥ N), this is done by including

a terminal weighting matrix Q in J , where Q is computed by solving a

Lyapunov matrix equation. The resulting MPC is identical to LQ optimal

control if constraints are inactive.

• Determining the sequence u that minimizes J subject to linear con-

straints on inputs and states is a Quadratic Programming problem, which

can be solved using either active set or interior point QP solvers.
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3 Closed-loop properties of model predictive control11

This section is concerned with the performance of predictive control laws in

closed-loop operation. Specifically: how to choose the cost and constraints so

as to ensure closed-loop stability and optimal performance when there is no

modelling error or unknown disturbance.

Section 2.7 explained how to extend the horizon of the MPC cost to infinity

by including a terminal weight in the cost function. The use of an infinite

cost horizon ensures that the predicted and actual input and state trajectories

are identical when there are no constraints, since in both cases the optimal

input is given by a fixed linear state feedback controller. But when constraints

are included in the optimization problem, the predicted and actual responses

may differ even if an infinite cost horizon is used, as the following example

demonstrates.

Example 3.1. Input constraints:

−1 ≤ uk ≤ 1

are imposed on the system that was considered in examples 2.1-2.4. To ac-

commodate these constraints, a predictive control law is constructed by solving

at each sample k = 0, 1, 2, . . . the optimization problem:

minimize
uk

J(xk,uk) =
N−1∑
i=0

(
‖xi|k‖2

Q + ‖ui|k‖2
R

)
+ ‖xN |k‖2

Q

subject to − 1 ≤ ui|k ≤ 1, for i = 0, 1, . . . , N − 1

and implementing uk = u∗0|k.

Here Q = C>C, R = 0.01, N = 2, and Q is the solution of (2.9) for the

case that K is the unconstrained LQ optimal gain (K =
[
−4.36 − 18.74

]
).

Using (2.4) and (2.12), the optimization can be written in the form of the QP

11Reading: Kouvaritakis & Cannon §2.4, §2.5, §2.6
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problem (2.15) with

H =

[
0.3043 0.1413

0.1413 0.0958

]
F =

[
1.0958 5.5443

0.4596 2.5417

]

Ac =


1 0

0 1

−1 0

0 −1

 b0 =


1

1

1

1

 Bx =


0 0

0 0

0 0

0 0


The optimization can be performed using e.g. Matlab’s quadprog function:

uPredicted = quadprog(H,F*x,Ac,b0+Bx*x);

where x is the current plant state. The current input to the plant is then given

by u = uPredicted(1). For initial condition x0 = (0.5,−0.5), the closed-

loop performance of this controller is good (Fig. 15), but for x0 = (0.8,−0.8)

we get the unstable response of Figure 16. ♦

3.1 Lyapunov stability analysis12

The instability of example 3.1 is potentially catastrophic, even though the

MPC optimization remains feasible at all times. Here the closed-loop system

is nonlinear because constrained MPC is a nonlinear control law, so closed-loop

stability cannot be checked by considering closed-loop system poles. However it

can be seen that the MPC algorithm in the example is potentially destabilizing

by looking at the time-variation of the optimal predicted cost J∗k = J(xk,u
∗
k)

(Fig. 17). Even for the well-behaved response of Fig. 15, J∗k is initially increas-

ing. Although the predicted state trajectories are necessarily stable (since the

cost over an infinite horizon is finite), the initial increase in J∗k implies:

• the stored energy in the system is initially increasing, since J∗k is in this

case a positive definite function of xk.

• the closed-loop trajectory doesn’t follow the optimal predicted trajectory,

since if it did the predicted cost J∗k would have to be non-increasing with k.

12Reading: Kouvaritakis & Cannon §2.6
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Figure 15: Response for initial condition x0 = (0.5,−0.5).
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Figure 16: Response for initial condition x0 = (0.8,−0.8).
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Figure 17: Optimal predicted cost J∗k for example 3.1 with x0 = (0.5,−0.5).

These observations suggest that instability could be avoided if J∗k were non-

increasing over time, or equivalently that stability can be analyzed by con-

sidering J∗k as a Lyapunov function. Before giving details, some extensions

of Lyapunov stability analysis (see C21 Nonlinear Systems lecture notes) to

discrete-time systems are first summarized below.

Equilibrium point. x0 is an equilibrium point of the system xk+1 = f(xk)

if and only if f(x0) = x0. We will assume that x0 = 0 is the equilibrium of

interest, and f(0) = 0.

Stable equilibrium. x0 = 0 is a stable equilibrium if, for all k > 0, the state

xk remains within an arbitrarily small region of state space containing x = 0

whenever the initial condition x0 lies sufficiently close to x = 0, i.e. for all

R > 0 there exists r > 0 such that

‖x0‖ < r =⇒ ‖xk‖ < R, ∀k > 0.
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Theorem 3.1 (Stability). For the discrete time system xk+1 = f(xk), if there

exists a continuously differentiable scalar function V (x) such that:

(a). V (x) is positive definite

(b). V
(
f(x)

)
− V (x) ≤ 0

whenever ‖x‖ is sufficiently small, then x = 0 is a stable equilibrium point.

Theorem 3.2 (Convergent series). For any sequence {a0, a1, . . .}:
if
∑n

k=0 ak tends to a finite limit as n→∞, then ak → 0 as k →∞.

Theorem 3.3 (Asymptotic convergence). For the discrete time system

xk+1 = f(xk), if there exists a continuously differentiable scalar function

V (x) such that:

(a). V (x) is positive definite

(b). V
(
f(x)

)
− V (x) ≤ −l(x) ≤ 0

then l(xk)→ 0 as k →∞.

Note that:

1. Theorem 3.2 is a direct consequence of the more general condition for

series convergence known as Cauchy’s convergence test.

2. The proof of the convergence result in Theorem 3.3 follows directly from

Theorem 3.2, since (b) implies that

l(xk) ≤ V (xk)− V (xk+1)

Summing both sides of this inequality over k = 0, 1, . . . therefore gives

∞∑
k=0

l(xk) ≤ V (x0)− lim
k→∞

V (xk).

The RHS of this inequality is necessarily finite because V (xk) ≥ 0 and

V (xk+1) ≤ V (xk) imply that V (xk) tends to a finite limit as k → ∞.

Therefore l(x)→ 0 from Theorem 3.2.



38 Closed-loop properties of MPC

Assume for simplicity that the MPC optimization problem is always feasible

(this assumption will be removed in the next section), i.e. for all k there exist

predicted input and state trajectories that satisfy the constraints. Then the

optimal value of the predicted cost (2.1) is a function of xk:

J(xk,u
∗
k) = J∗k = V (xk),

and although this function is not known explicitly, it is straightforward to derive

conditions under which (a) and (b) of Theorem 3.3 are satisfied.

Positive definiteness of J∗k . If either of the following conditions holds:

(i). Q is positive definite

(ii). (A,Q1/2) is an observable pair, where Q1/2 is any matrix with

Q1/2>Q1/2 = Q,

then J∗k is a positive definite function of xk.

Here condition (i) simply ensures that the first term (and hence the entire

sum) in (2.1) is positive definite in xk. On the other hand if (ii) is satisfied,

then J∗k = 0 implies ‖Q1/2xi|k‖2
2 = 0, i = 0, 1, . . ., and hence xk = 0 since

(A,Q1/2) is observable. Since J∗k ≥ 0 for all xk, it follows that J∗k is positive

definite in xk.

Convergence of J∗k . If both of the following conditions hold:

(iii). the terminal weight in (2.1) is chosen so that J∗k is equivalent to the

infinite horizon cost (2.7),

(iv). the optimal predicted input sequence computed at time k is feasible

(i.e. satisfies constraints) for the optimization problem at time k + 1,

then the optimal predicted cost is non-increasing and satisfies

J∗k+1 − J∗k ≤ −
(
‖xk‖2

Q + ‖uk‖2
R

)
(3.1)

along closed-loop trajectories.
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Given condition (iv), the inequality (3.1) derives from the fact that the optimal

cost at current time must be at least as small as the cost evaluated for the

tail of the optimal predicted input sequence computed at the previous sample.

To show this, denote the input sequence at time k + 1 corresponding to the

optimal prediction at time k as ũk+1:

ũk+1 = {u∗1|k, u∗2|k, . . . , Kx∗N |k}. (3.2)

For convenience we will refer to this sequence as the tail (see Fig. 18). Note

that Nth element of ũk+1 is equal to u∗N |k and is therefore defined by the state

feedback law u = Kx, which is assumed to be employed over the mode 2

horizon in the definition of the terminal weight Q. Since J(xk,uk) is an

infinite horizon cost, the value J̃k+1 = J(xk+1, ũk+1) associated with ũk+1 is

simply J∗k minus the term relating to time k, i.e.

J̃k+1 = J(xk+1, ũk+1) =
N∑
i=1

(
‖xi|k‖2

Q + ‖u∗i|k‖2
R

)
+ ‖x(k +N + 1|k)‖2

Q

=
∞∑
i=1

(
‖xi|k‖2

Q + ‖u∗i|k‖2
R

)
=

∞∑
i=0

(
‖xi|k‖2

Q + ‖u∗i|k‖2
R

)
−
(
‖xk‖2

Q + ‖uk‖2
R

)
= J∗k −

(
‖xk‖2

Q + ‖uk‖2
R

)
.

But ũk+1 is suboptimal at time k + 1, so the optimal value satisfies

J∗k+1 ≤ J̃k+1

= J∗k −
(
‖xk‖2

Q + ‖uk‖2
R

)
,

which implies (3.1).

By combining conditions (i) or (ii) with (iii) and (iv), and using Theorems 3.1-

3.3, we get the following result.

If J(xk,uk) is an infinite horizon cost and (A,Q1/2) is observ-

able, then x = 0 is a stable equilibrium for the closed-loop

system and xk converges asymptotically to zero, provided that

the tail ũk is feasible for all k > 0.
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u
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tail at k + 1

0 1 N−1 N

Figure 18: The optimal prediction u∗k at time k and the tail ũk+1 at time k+1.

3.2 Terminal constraints for recursive feasibility13

The guarantees of closed-loop stability and convergence derived in the previous

section rely on the assumption that the predictions generated by the tail, ũk,

satisfy constraints at each time k = 1, 2, . . .. From the definition (3.2) it is

clear that ũk+1 satisfies constraints over the first N − 1 sampling intervals

of the prediction horizon, since the optimal predictions at time k, namely

{u∗1|k, . . . , u∗N−1|k}, necessarily satisfy constraints. However for ũk+1 to be

feasible at k + 1, we also need the Nth element of ũk+1 (i.e. u∗N |k = Kx∗N |k)

to satisfy constraints, and this requires extra constraints to be introduced in

the MPC optimization at k.

Extra constraints that are introduced to ensure feasibility of the tail are known

as terminal constraints since they apply to mode 2 predictions (which are

governed by time-invariant feedback), and are therefore equivalent to con-

straints on the terminal state prediction xN |k. For convenience we denote the

region in which xN |k must lie in order to satisfy given terminal constraints as

Ω (Fig. 19).

xk

x1|k

xN−1|k

xN |k

xN+1|k

safe region
for mode 2
control law

Figure 19: The terminal constraint set Ω.

The terminal constraints must be constructed so as to ensure feasibility of

13Reading: Kouvaritakis & Cannon §2.4, §2.5
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the MPC optimization recursively, i.e. so that the tail predictions necessarily

satisfy constraints, including the terminal constraints themselves. Consider for

example the case of input and state constraints: u ≤ u ≤ u and x ≤ x ≤ x. To

ensure that the tail satisfies constraints over the first N steps of the prediction

horizon at time k + 1, we need to include a terminal constraint

xN |k ∈ Ω =⇒
{
u ≤ KxN |k ≤ u

x ≤ xN |k ≤ x
(3.3)

in the MPC optimization. But the predictions generated by ũk+1 must also

satisfy the terminal constraint xN+1|k+1 ∈ Ω in the MPC optimization at time

k + 1, and this is equivalent to an additional constraint on the predictions at

time k:

(A+BK)xN |k ∈ Ω (3.4)

The conditions of (3.3) and (3.4) lead to the following results.

Recursive feasibility. Necessary and sufficient conditions for the predictions

generated by the tail ũk+1 to be feasible at time k + 1 whenever the MPC

optimization at time k is feasible are:

(i). the constraints (3.3) are instantaneously satisfied at all points in Ω

(ii). Ω is invariant in mode 2, which is equivalent to requiring that

(A+BK)xN |k ∈ Ω for all xN |k ∈ Ω

If Ω satisfies (i) and (ii), then the MPC optimization:

minimize
uk

J(xk,uk) =
N−1∑
i=0

(
‖xi|k‖2

Q + ‖ui|k‖2
R

)
+ ‖xN |k‖2

Q

subject to u ≤ ui|k ≤ u, i = 0, 1, . . . , N − 1

x ≤ xi|k ≤ x, i = 1, . . . , N − 1

xN |k ∈ Ω

(3.5)

is guaranteed to be feasible at all times k > 0 provided it is feasible at k = 0.
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This means that the region of attraction (denoted SΩ) for the MPC law is

given by the set of all initial conditions from which it is possible to drive the

state predictions into Ω over the mode 1 horizon, i.e.

SΩ =


x0 : ∃u 0 satisfying xN |0 ∈ Ω

u ≤ ui|0 ≤ u ∀i ∈ {0, . . . , N − 1}

x ≤ xi|0 ≤ x ∀i ∈ {1, . . . , N}


(3.6)

3.3 Constraint checking horizon14

The set of feasible initial plant states SΩ can be enlarged by increasing N (the

horizon within which the predicted state must reach Ω), or by enlarging Ω (the

target set). For any given N it is desirable to make SΩ as large as possible

in order to maximize the allowable operating region of the MPC law, and this

implies that Ω should be made as large as possible. This section is concerned

with the design of the terminal constraints defining Ω, and it is shown below

that the largest possible Ω is obtained if the terminal constraints are defined

simply by forcing the mode 2 predictions to satisfy the system input and state

constraints over a sufficiently long horizon.

The method of imposing terminal constraints by imposing system constraints

on mode 2 predictions is based on two facts:

• The conditions derived in the previous section for ensuring recursive fea-

sibility require system constraints to be satisfied over the entire mode 2

horizon, i.e., for all i ≥ 0:

u ≤ K(A+BK)ixN |k ≤ u and x ≤ (A+BK)ixN |k ≤ x.

Hence the largest possible Ω is defined by

Ω = {x : u ≤ K(A+BK)ix ≤ u, x ≤ (A+BK)ix ≤ x, i = 0, 1, . . .}
14Reading: Kouvaritakis & Cannon §2.4
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• Constraint satisfaction over the infinite mode 2 horizon can be determined

by checking constraints over a long enough finite horizon.

To justify the claim in the second point above, consider the case of input

constraints alone: u ≤ u ≤ u, and let ΠM be the set of initial conditions

for which input constraints are satisfied over a horizon of length M under the

mode 2 feedback law u = Kx, i.e.

ΠM = {x : u ≤ K(A+BK)ix ≤ u, i = 0, 1, . . . ,M}. (3.7)

Then the second fact above can be equivalently stated as

Π∞ = ΠNc (3.8)

for some finite horizon Nc, and this is a consequence of the assumption that

(A + BK) is a stable matrix (|λ{A + BK}| < 1) so that (A + BK)i → 0

as i → ∞. As a result, for any given x, the perpendicular distance di of the

hyperplane defined by K(A + BK)ix = u from x = 0 tends to infinity as

i→∞:

di =
u

‖K(A+BK)i‖2
→∞ as i→∞.

But Π∞ is finite (assuming that (A + BK,K) is an observable pair) since

constraints must be violated at some future time whenever x0 is large enough,

and therefore the strip of state space defined by

{x : u ≤ K(A+BK)ix ≤ u}

necessarily contains Π∞ for all i > Nc for some finite Nc. Therefore all points

x ∈ ΠNc lie within Π∞, and this implies (3.8).

Example 3.2. For the constrained system considered in Example 3.1, suppose

that the mode 2 feedback law is defined as the LQ optimal controller for cost

matrices Q = C>C and R = 1: uk = Kxk, K =
[
−1.19 − 7.88

]
. Then
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ΠM , M = 0, 1, 2, . . . are given by:

Π0 = {x : −1 ≤
[
−1.19 −7.88

]
x ≤ 1}

Π1 = Π0 ∩ {x : −1 ≤
[
−0.5702 −4.9754

]
x ≤ 1}

Π2 = Π1 ∩ {x : −1 ≤
[
−0.1621 −2.7826

]
x ≤ 1}

Π3 = Π2 ∩ {x : −1 ≤
[
0.0818 −1.2427

]
x ≤ 1}

...

and in this case ΠM = Π4 for all M > 4 (Fig. 20), which therefore implies

Nc = 4. ♦

The minimum constraint checking horizon Nc that is required for a given plant

model and mode 2 feedback law can be computed offline using the following

result.

Theorem 3.4 (Constraint checking horizon). ΠNc = Π∞ if and only if

x ∈ ΠNc+1 whenever x ∈ ΠNc.

Theorem 3.4 can be proved by induction:

(a). First note that, if x ∈ ΠNc+1 whenever x ∈ ΠNc, then ΠNc ⊆ ΠNc+1. But

we also have ΠNc+1 = ΠNc ∩ {x : u ≤ K(A+BK)Nc+1x ≤ u}, implying

that ΠNc+1 ⊆ ΠNc by definition. Thus we conclude that if x ∈ ΠNc+1

whenever x ∈ ΠNc, then ΠNc = ΠNc+1.

(b). If x ∈ ΠNc = ΠNc+1, then u ≤ Kx ≤ u and (A+BK)x ∈ ΠNc = ΠNc+1,

and hence x ∈ ΠNc+2.

(c). By repeatedly applying the argument in (b) we conclude that x ∈ ΠNc =

ΠNc+1 implies x ∈ ΠNc+i, for all i = 2, 3, . . ., and therefore x ∈ Π∞.

Because of Theorem 3.4, it is only necessary to determine a number M such

that the constraints over the first M steps of mode 2 ensure that the con-

straints are satisfied at the (M + 1)th step in order to determine Nc. For the
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case of input constraints, this is equivalent to checking whether the following

statement is true:

u ≤ K(A+BK)ix ≤ u, i = 0, 1, . . . ,M =⇒ u ≤ K(A+BK)M+1x ≤ u

If the input u has dimension nu, this can be checked by computing the maxi-

mum over x of each element of K(A+BK)M+1x subject to constraints:

umax,j = max
x

Kj(A+BK)M+1x s.t. u ≤ K(A+BK)ix ≤ u,

i = 0, 1, . . . ,M

umin,j = min
x
Kj(A+BK)M+1x s.t. u ≤ K(A+BK)ix ≤ u,

i = 0, 1, . . . ,M

for j = 1, 2, . . . , nu (where Kj is the jth row of K), requiring the solution of

2nu linear programming problems. Constraints at the (M+1)th step are satis-

fied if u ≤ [umax,1 · · · umax,nu]
> ≤ u. Thus the minimum constraint checking

horizon Nc can be computed by solving a finite number of linear programs.

The algorithm is summarized for the case of nu = 1 in Figure 21.

Example 3.3. Applying the algorithm of Figure 21 to the system and mode 2

feedback law considered in Example 3.2, we get:

umax = max
x

{[
−0.1621 −2.7826

]
x s.t.

[
−1

−1

]
≤

[
−1.1877 −7.8773

−0.5702 −4.9754

]
x≤

[
1

1

]}
= 1.9801

=⇒ Nc > 1

umax = max
x

{[
0.0818 −1.2427

]
x s.t.

−1

−1

−1

≤
−1.1877 −7.8773

−0.5702 −4.9754

−0.1621 −2.7826

x≤
1

1

1

}
= 1.2570

=⇒ Nc > 2
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Terminal constraint set 

Algorithm  (computation of     ) : 

   

umax := max
x

K ( A+ BK )N+1 x s.t. u ! K ( A+ BK )i x ! u , i = 0,…N

umin := min
x

K ( A+ BK )N+1 x s.t. u ! K ( A+ BK )i x ! u , i = 0,…N

  Nc := N

  N := 0

   

umax ! u ?
and
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  N := N +1 no 

yes 

2 linear programs 
solved at each step 

Figure 21: Algorithm for computing the mode 2 constraint checking horizon

Nc for the case of input constraints u ≤ u ≤ u, with 1-dimensional input u.

umax = max
x

{[
0.2061 −0.2466

]
x s.t.


−1

−1

−1

−1

≤

−1.1877 −7.8773

−0.5702 −4.9754

−0.1621 −2.7826

0.0818 −1.2427

x≤


1

1

1

1

}

= 1.0152

=⇒ Nc > 3

umax = max
x

{[
0.2498 0.3308

]
x s.t.


−1

−1

−1

−1

−1

≤

−1.1877 −7.8773

−0.5702 −4.9754

−0.1621 −2.7826

0.0818 −1.2427

0.2061 −0.2466

x≤


1

1

1

1

1

}

= 0.8893

umin = −umax = −0.8893

=⇒ Nc = 4

Hence Nc = 4, which is in agreement with the plots in Fig 20. ♦
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3.4 Closed-loop performance15

With the terminal constraint xN |k ∈ Ω = ΠNc incorporated in (3.5), the

optimization solved at each sample to determine the MPC law uk = u∗0|k can

be expressed:

minimize
u

J(xk,uk) =
N−1∑
i=0

(
‖xi|k‖2

Q + ‖ui|k‖2
R

)
+ ‖xN |k‖2

Q

subject to u ≤ ui|k ≤ u, i = 0, 1, . . . , N − 1

x ≤ xi|k ≤ x, i = 1, . . . , N − 1

u ≤ K(A+BK)ixN |k ≤ u, i = 0, 1, . . . , Nc

x ≤ (A+BK)ixN |k ≤ x, i = 0, 1, . . . , Nc

(3.9)

Note that:

• This is a quadratic programming (QP) problem, and the computational

burden due to the inclusion of terminal constraints is small since these

constraints are linear (the main factor determining computational require-

ments is the number of free variables).

• The size of the set of feasible initial conditions SΩ increases as N is

increased.

• The optimal predicted cost J∗k is reduced as N is increased.

The performance of the closed-loop system:

Jcl =
∞∑
k=0

(
‖xk‖2

Q + ‖uk‖2
R

)
(3.10)

is likely to improve as N is increased due to the reduction in predicted cost.

However, for given x0, there exists some finite value N∞ (which depends on

x0) such that no improvement in closed-loop performance can be obtained

for N > N∞. This is because the terminal constraints must be inactive for

15Reading: Kouvaritakis & Cannon §2.5, §2.6
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sufficiently large N , and there cannot be any reduction in cost if N is increased

further. Therefore the optimal performance for an infinite number of degrees

of freedom is obtained if N = N∞. This ideal optimal performance is known

as constrained LQ optimal performance.

Example 3.4. For the system and cost matrices considered in Example 3.2,

the table below gives the variation with N of the closed-loop performance of

the MPC law defined by (3.9) (with Nc = 4). In each case the initial state is

x0 = (−7.0, 0.5). The closed-loop responses in Figure 22 demonstrates that

N∞ = 10 for this initial condition.

N 5 6 7 10 > 10

J∗0 295.2 287.7 286.8 286.6 286.6

Jcl 286.7 286.7 286.6 286.6 286.6

♦

Summary of Section 3

• If Q and Nc are determined (offline) by solving the Lyapunov equa-

tion (2.9), and by computing the required Nc so that Π∞ = ΠNc, then

the objective Jk is equal to the cost evaluated over the infinite prediction

horizon, and the constraints in (3.9) ensure that predictions satisfy the

system constraints at all future times: k, k + 1, k + 2, . . ..

• If a solution to (3.9) exists initially (at time k = 0), then the MPC

optimization will be feasible at all times k > 0, and the closed-loop

system is therefore stabilized from all initial conditions x0 in SΩ.

• Constrained LQ optimal closed-loop performance is obtained with a suf-

ficiently long mode 1 horizon N .
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4 Disturbances and robustness 16

This section considers methods of providing robustness to model uncertainty

in the form of unknown disturbances acting on the plant. Integral action

and robust constraint implementations are described for the case of constant

disturbances with known upper and lower bounds. Extensions to time-varying

disturbances are also briefly discussed.

The discussion in this section focuses on linear plant models with unknown

additive disturbances of the form

xk+1 = Axk +Buk +Dwk, yk = Cxk. (4.1)

Here D is a known matrix and wk is an unknown disturbance17. For simplicity

we assume the state xk can be measured and we ignore sensor noise.

Model uncertainty resulting from this kind of disturbance typically arises in

control applications as a result of: (i) incomplete knowledge of the plant model,

(ii) random processes in the system dynamics, or (iii) the use of observer state

estimates in prediction models (although in this case the uncertainty lies in the

estimated state). A particular instance of (i) (which is extremely common in

setpoint tracking problems) is due to uncertainty in the plant d.c. gain.

To understand how disturbances arise in the setpoint tracking problem, consider

the problem of driving the output yk to a constant setpoint y0. The required

steady state input is u0, where

x0 = Ax0 +Bu0, y0 = Cx0 =⇒ y0 = C(I − A)−1Bu0.

Hence u0 is unique if the matrix C(I−A)−1B of steady state gains is invertible

(assuming for simplicity that the number of plant inputs and outputs are equal),

and

u0 = [C(I − A)−1B]−1y0 x0 = (I − A)−1Bu0.

Given the steady state values x0 and u0, a change of variables:

xδk = xk − x0, uδk = uk − u0, xδk+1 = Axδk +Buδk
16Reading: Kouvaritakis & Cannon §3.1–3.3
17The disturbance wk in (4.1) is a process disturbance rather than an output disturbance; an

example of the latter is the sensor noise term v in a measurement yk = Cxk + vk.
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converts the setpoint tracking problem into a regulation problem:

minimize
uδ

J(xk,uk) =
N−1∑
i=0

(
‖xδi|k‖2

Q + ‖uδi|k‖2
R

)
+ ‖xδN |k‖2

Q

subject to u ≤ uδi|k + u0 ≤ u, i = 0, 1, . . . , N +Nc

x ≤ xδi|k + x0 ≤ x, i = 1, . . . , N +Nc

This optimization problem can be used to define an MPC law by using the

methods of Sections 2.3 and 3.3 to design the terminal weighting matrix Q and

terminal constraints via a constraint checking horizon Nc. The optimization

can be cast in terms of the predicted sequence uδk = {uδ0|k, . . . , uδN−1|k} as a

QP problem. Having computed the solution, uδ∗k = {uδ∗0|k, . . . , uδ∗N−1|k}, at time

k, the control law is implemented via

uk = uδ∗0|k + u0.

However, if the required steady state input u0 is not known exactly, and an

estimate û0 is used instead in the definition of the control law,

uk = uδ∗0|k + û0,

then the system governing xδ will contain a constant disturbance term, since

uδk = uδ∗0|k + (û0 − u0) =⇒ xδk+1 = Axδk +Buδ∗0|k +B(û0 − u0).

As a result there will be a non-zero steady state error because xδ = 0 will not

be an equilibrium of the closed-loop system, i.e.

if xδk = 0 then uδ∗0|k = 0, so xδk+1 = B(û0 − u0) 6= 0.

In fact it is possible to determine the steady state error since the MPC law

converges to the unconstrained LQ feedback law (assuming that constraints

are not active at steady state), i.e. uδ∗0|k = Kxδ0|k, and the closed-loop system

therefore becomes:

xδk+1 = (A+BK)xδk +B(û0 − u0)

=⇒

{
xδk → (I − A−BK)−1B(û0 − u0)

yk → y0 + C(I − A−BK)−1B(û0 − u0)

as k →∞, giving a steady state error in y of C(I−A−BK)−1B(û0−u0).
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4.1 MPC with integral action

A common approach to removing steady state error due to a constant distur-

bance is to introduce integral action into the controller. This can be done

simply by including an integrator in the MPC law. Assuming for example that

the target setpoint for y is y0 = 0, so that the tracking error is y − y0 = y,

we can introduce integral action with a controller of the form

uk = u∗0|k +KIvk

vk+1 = vk + yk

where KI is an integral gain and v is the integrator state. Note that, if this

modification is not accounted for in the cost and constraints (how to do this is

described below and in section 4.2), then closed-loop performance and stability

will no longer be guaranteed. However, if the closed-loop system is stable, then

the steady state error must be zero since

uk → uss =⇒ vk → vss =⇒ yk → 0

as k →∞, for some finite uss, vss.

If there are no system constraints, then integral action can be introduced

without compromising closed-loop stability just by modifying the cost to include

a penalty on the predicted integrator state:

J(xk,uk) =
∞∑
i=0

(
‖zi|k‖2

Qz
+ ‖ui|k‖2

R

)
. (4.2)

Here z is the state of an augmented system, which contains both the plant

and integrator state:

z0|k =

[
xk

vk

]
zi+1|k =

[
A 0

C I

]
zi|k +

[
B

0

]
ui|k (4.3)

and

Qz =

[
Q 0

0 QI

]
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for some weighting matrices Q,QI . The unconstrained LQ optimal feedback

for the cost (4.2) has the form

u∗0|k =
[
K KI

]
z0|k = Kxk +KIvk (4.4)

where the relative size of the integral gain KI is determined by QI .

The (unconstrained optimal, linear) control law (4.4) applied to the disturbed

system (4.1) leads to a closed-loop system which converges to zero steady

state error regardless of the size of w because:

• For w = 0: the optimal value of the cost (4.2) satisfies

J∗k+1 − J∗k = −‖zk‖2
Qz
− ‖uk‖2

R

and the Lyapunov stability analysis of section 3.1 therefore implies that

z = 0 is asymptotically stable provided the pair([
A 0

C I

]
,

[
Q1/2 0

0 Q
1/2
I

])
is observable.

• For w 6= 0: the optimal cost is not guaranteed to decrease along closed-

loop trajectories (the predicted and closed-loop behaviour will differ since

w = 0 is assumed in the predictions), however the stability guarantee

for w = 0 implies that the poles of the (linear) closed-loop system un-

der (4.4):

zk+1 =

[
A+BK BKI

C I

]
zk +

[
D

0

]
d

lie inside the unit circle. Therefore zk → zss for some finite zss, implying

yk → y0.

4.2 Robustness to constant disturbances

If w = 0 is assumed in the prediction model (4.1), then incorporating con-

straints on the control input and system state into a constrained minimization
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of the cost (4.2) leads to an MPC optimization problem of the form

minimize
u

J(xk,uk) =
N−1∑
i=0

(
‖zi|k‖2

Qz
+ ‖ui|k‖2

R

)
+ ‖zN |k‖2

Qz

subject to u ≤ ui|k ≤ u, i = 0, 1, . . . , N +Nc

x ≤ xi|k ≤ x, i = 1, . . . , N +Nc

(4.5)

Here the predicted values of z are governed by the augmented system (4.3),

and Qz, Nc are determined for the mode 2 feedback law u = Kx+KIv. Since

the disturbance w is not accounted for in predictions, there is clearly no guar-

antee of recursive feasibility and therefore no closed-loop stability guarantee.

However if the closed-loop system is stable, the steady state error must be

zero since zk must converge to a finite steady state value.

4.2.1 Robust constraint satisfaction

To obtain a guarantee that the MPC optimization problem has a solution at

all times k > 0 provided it is feasible at k = 0, we need to ensure that the

predictions satisfy constraints for all possible disturbances. For the case of

constant disturbance vectors with elements that lie between known upper and

lower bounds:

wk = w, w ≤ w ≤ w (4.6)

the augmented state predictions can be expressed

zi|k = ẑi|k + ei|k

ẑi|k =

[
A 0

C I

]i
zk + Ciuk, ei|k =

i−1∑
j=0

[
A 0

C I

]j [
D

0

]
w

where ẑi|k denote the predictions for w = 0 and ei|k accounts for the effects

of non-zero w. Hence for robust constraint satisfaction we require

u ≤ ui|k ≤ u

x ≤
[
I 0

]
ẑi|k +

[
I 0

]
ei|k ≤ x

(4.7)

for i = 0, 1, . . . and all w in the interval [w,w]. Hence the constraints in (4.7)

are satisfied for all w if and only if they are satisfied when the uncertain terms
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are replaced by their worst case values, namely

hi = min
w≤d≤w

[
I 0

]
ei|k, hi = max

w≤d≤w

[
I 0

]
ei|k

(where the maximizations and minimizations apply elementwise, one for each

element of [I 0]ei|k). Since ei|k depends linearly on w, the vectors of bounds

hi, hi can be computed by solving a set of linear programs, e.g.

hi = min
w≤d≤w

[
I 0

] i−1∑
j=0

[
A 0

C I

]j [
D

0

]
w

hi = max
w≤d≤w

[
I 0

] i−1∑
j=0

[
A 0

C I

]j [
D

0

]
w

for i = 1, 2, . . .. The robust constraints (4.7) are then equivalent to tightened

constraints on the nominal predictions of the state:

u ≤ ui|k ≤ u[
I 0

]
x− hi ≤

[
I 0

]
ẑi|k ≤ x− hi.

It is convenient to think of uncertain component of the predicted state se-

quence, {e0|k, e1|k, e2|k, . . .}, as a lying within a tube defined by a collection

of sets, one for each time-step of the prediction horizon. Note that this tube

does not depend on the initial state zk, and the bounds hi, hi can therefore

be computed offline.

4.2.2 Pre-stabilized predictions

If the open-loop system is unstable, then the tube containing the predictions of

e diverges, and hence the bounds hi, hi grow in magnitude as i increases. This

can severely restrict the feasible initial condition set SΩ of a robust predictive

control law in which constraints must be satisfied for all possible disturbances.

The problem can be overcome by expressing predictions as perturbations on a

stabilizing linear feedback law, which we take as the mode 2 feedback law:

ui|k =
[
K KI

]
zi|k + ci|k,

ci|k =

{
optimization variables, i = 0, 1, . . . , N − 1

0, i ≥ N
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Figure 23: The feedback structure of nominal MPC (a) and the feedback

structure of MPC with pre-stabilized predictions (b)

With this modification, the state predictions are given by

zi|k = ẑi|k + ei|k

ẑi|k = Ψizk + C ′i ck (4.8)

ei|k =
i−1∑
j=0

Ψj∆w

where Ψ =

[
A+BK BKI

C I

]
is a stable matrix and where ∆ =

[
D

0

]
.

Therefore the tube containing e converges, and, for any given w, ei|k converges

to a constant value as i→∞. The cost and constraints can be reformulated

in terms of the degrees of freedom in ck using the approach described in

section 2.

Example 4.1. Consider the constrained first order system with a constant

unknown disturbance w:

xk+1 = axk + uk + w, |w| ≤ 1 a = 2

|xk| ≤ 2
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(note that the open-loop system is unstable since a > 1). The effect of

disturbances on state predictions is given by

ei|k =
i−1∑
j=0

ajw = (2i − 1)w

and for robust constraint satisfaction, we therefore require the upper and lower

bounds of Fig 24 to remain within constraints. Clearly this cannot be achieved

for any mode 1 horizon N > 1.

However the pre-stabilized predictions: ui|k = −1.9xi|k + ci|k result in predic-

tions
xi+1|k = 0.1xi|k + ci|k + w

ei|k =
i−1∑
j=0

0.1jw = (1− 0.1j)w/0.9

For robust constraint satisfaction we now require that the upper and lower

bounds in Fig 25 remain within constraints, which can be satisfied for some c0

for all i > 0. ♦

4.2.3 Tubes and time-varying disturbances 18

Robust constraint handling strategies for systems with time-varying distur-

bances within known bounds:

xk+1 = Axk +Buk +Dwk, w ≤ wk ≤ w (4.9)

can be derived using a similar approach to the one described above for con-

stant disturbances. In this case, when integral action is incorporated and

pre-stabilized predictions are used (as discussed in Sections 4.1 and 4.2.2), the

uncertainty in predictions is governed by

ei+1|k = Ψei|k + ∆wk

Ψ =

[
A+BK BKI

C I

]
, ∆ =

[
D

0

]
,

18Reading: Kouvaritakis & Cannon §3.2–3.3
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Figure 24: The tube containing the uncertainty e in the state predictions in

Example 4.1.

with e0|k = 0. Since ei|k does not depend on the plant state, the tube contain-

ing e can again be determined offline and the constraints of (4.7) are again

equivalent to tightened constraints on the uncertainty-free predictions

u− g
i
≤
[
K KI

]
ẑi|k + ci|k ≤ u− gi

x− hi ≤
[
I 0

]
ẑi|k ≤ x− hi

where g
i
, gi, hi, hi are defined for i = 1, 2, . . . by a sequence of linear pro-

grams:

hi = hi−1 + min
w≤d≤w

[
I 0

]
Ψi−1∆w, hi = hi−1 + max

w≤d≤w

[
I 0

]
Ψi−1∆w

g
i

= g
i−1

+ min
w≤d≤w

[
K KI

]
Ψi−1∆w, gi = gi−1 + max

w≤d≤w

[
K KI

]
Ψi−1∆w

with h0 = h0 = 0 and g
0

= g0 = 0.
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Figure 25: The stabilized tube containing the predicted uncertainty e for the

case of pre-stabilized predictions in Example 4.1.

The online optimization defining the MPC law therefore takes the form:

minimize
ck

J(xk,uk)

subject to u− g
i
≤
[
K KI

]
ẑi|k + ci|k ≤ u− gi

x− hi ≤
[
I 0

]
ẑi|k ≤ x− hi

for i = 0, 1, . . . , N +Nc

(4.10)

where ẑi|k is given in terms of zk and ck by (4.8), and the control law is

uk =
[
K KI

]
zk + c∗0|k.

Two possible choices for the objective minimized in (4.10) are

• J = Jmax: an upper bound on the performance cost over all possible

disturbance sequences;

• J = Ĵ : the nominal cost (i.e. the cost that is obtained by assuming

wi|k = 0 at all prediction times i = 0, 1, . . .).
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In many cases the nominal cost can result in less conservative control than

the upper-bound cost. However this depends on the likelihood of large distur-

bances occurring, and the cost must therefore be chosen by taking into account

information on the probability distribution of stochastic disturbances.

Both approaches provide stability guarantees. In the case of the nominal cost,

this derives from the property that, if [K KI ] is chosen as the LQ optimal gain

for the unconstrained nominal system (as described in Section 4.1), then the

optimal value of ck is zero whenever constraints are inactive. Therefore the

cost Ĵ takes the form:

Ĵ = c>kHc ck + x>k Px xk, for Hc > 0

and it can furthermore be shown that Hc is block-diagonal. Consequently,

minimizing Ĵk is equivalent to minimizing c>kHc ck in (4.10), and the recur-

sive feasibility of the constraints in (4.10) combined with the block diagonal

structure of Hc together imply that

c>k+1Hc ck+1 ≤ c>kHc ck − c>0|kPc c0|k

where Pc is a positive-definite matrix. Therefore, even though the nominal cost

Ĵk may not decrease monotonically, the convergence analysis of Section 3.1

implies
∞∑
k=0

c>0|kPc c0|k ≤ ∞ and c0|k → 0 as k →∞.

Finally, the robust stability of x = 0 follows from the fact that if [K KI ] is LQ

optimal, then the gain γ of the closed loop system from the c0|k sequence to

the state sequence zk is necessarily finite, i.e.

∞∑
k=0

‖z>k ‖2 ≤ γ

∞∑
k=0

c>0|kPc c0|k ≤ ∞.

(Note that this is a sensible notion of stability for the case of persistent time-

varying additive uncertainty, for which it is not possible to enforce asymptotic

convergence of the state zk to zero).

The stability guarantee for the upper-bound cost Jmax follows from the fact that

the value of Jmax that is obtained by minimizing the worst case cost in (4.10)
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at each sampling instant is necessarily monotonically non-increasing. Stability

can therefore be demonstrated by using Lyapunov-like analysis applied to this

optimal cost. Note however that the MPC optimization (4.10) becomes a min-

max optimization in this case, which typically requires greater computational

effort than a QP problem.

Summary of Section 4

• Integral action can be incorporated in a predictive control law by includ-

ing the integrated output error (evaluated for w = 0) in the predicted

performance cost. Then:

– the closed-loop system is asymptotically stable if w = 0

– there is no steady state error if the response is stable and w 6= 0.

• Robust constraint satisfaction (i.e. for all possible disturbance values)

can be ensured by imposing a finite number of linear constraints on

predictions. The MPC optimization is then guaranteed to be feasible at

all times k > 0 if a solution exists at k = 0.


