Model Predictive Control Examples Sheet

Mark Cannon, Hilary Term 2023

Reading: Kouvaritakis & Cannon, Sections 2.1-2.6 and 3.1-3.3

or Maciejowski Chapters 2, 3, 6, 8

Prediction equations

1. A system with model

Tpy1 = Axy + Buy, yr = Cxy
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is to be controlled using an unconstrained predictive control law that mini-

mizes the predicted performance cost
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. Show that the state predictions can be written in the form

Uo|k Lok
X = Mxp +Cug, u, = : , X = :
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and evaluate C and M for a horizon of N = 3.

. For N = 3, determine the matrices H, F' and G in

Jr = u} Huy, + 22) F'uy, + 2] Gay,.

. Give expressions for the derivatives 0.J/0u,;, for i = 0,1,2. Hence

verify that the gradient of J is V,J = 2Hu + 2Fx.

. For the plant model and cost given in Question 1, show that the un-



constrained predictive control law for N = 3 is linear feedback:
wp = Lrp, L —— [0.1948 0.1168] .

Hence show that the closed-loop system is unstable.

(b). Write some Matlab code to evaluate M and C for any given N, and
hence determine H and F, for any horizon length N. Show that the

predictive control law does not stabilize the system if N < 6.

Infinite horizon cost and constraints

3. (a). Explain why the predictive control law of Question 1 necessarily stabi-
lizes the system if the cost is minimized subject to xy;, = 0.

(Hint: what is the infinite horizon cost when this constraint is used?)

(b). How would you modify the cost of Question 1 in order to achieve closed
loop stability without including the constraint xy;;, = 07 Why would
this be preferable?

4. A predictive controller minimizes the predicted performance index:

at each time-step % subject to input constraints: —1 < w;;, < 2 for all

© > 0. The system output y is related to the control input u via

Tpi1 = Az + Bup, yr = Cxyp,
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(a). Why is the MPC optimization performed repeatedly, at £k =0,1,2.. .,

instead of just once, at k = 07



(b).

If the mode 2 feedback law is u; = [2 —1} x)., show that

N 13 —1
Jr = Z(fyﬁk + u22|k:) +x—|l\—7\k [_1 5 ] TN|k

where N is the length of the mode 1 prediction horizon.

. Show that the constraints

A<up <2, i=01,... N+1

ensure that the predictions satisfy —1 < w;;, < 2 for all + > 0.

*

. Derive a bound on J;,; — J;, where J; is the optimal value of Jj.

Hence show that -, (y,% + uz) < J; along trajectories of the closed

loop system.

. Is the closed loop system stable? Explain your answer.

. Explain the function of terminal constraints in a model predictive con-

trol strategy for a system with input or state constraints. Define two

principal properties that must be satisfied by a terminal constraint set.

. A discrete time system has the state space model

0.3 —0.9 0.5
Tpy1 = Axp + Bug, A= , B=
s g g —04 —21] [1]

and constraints

|[$]1 + [$]2| <1, |[x]1 — [x]Ql <1, z= [Eﬁ]

(i). If the terminal feedback law is u; = Ky, K = [0.4 1.8], show

that the following set is a valid terminal constraint set

{a:|[a]s + 2]l <1, 2] - [ala] < 1}.



(ii). Describe a procedure for determining the largest terminal constraint

set for the case of a general feedback gain K.

(c). What are the main considerations that govern the choice of the predic-

tion horizon N?

Integral action and disturbances

6.

The vertical position y of a machine tool positioning platform is controlled
by a motor which applies a vertical force F' to the platform (Figure 1). The
platform has mass M and carries a variable load of mass m; the unloaded
weight of the platform is balanced by a counter-weight. The force F' is
proportional to the voltage V' applied to the motor, so that F' = KyV

where Ky is a fixed gain.
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Figure 1. Machine tool and positioning platform

Assuming m is small enough that M + m ~ M, the unknown load consti-
tutes a (constant) disturbance in the discrete-time model of the system for

sampling interval T":

Try1 = Axp + Bup + Dw, e, = Cxy
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where ¢ is the error in y relative to a desired steady-state height 3°, and

y(kT) —y°

T k)

. up =V(KT), w=m.

(a). For the model parameters M = 10kg, Ky = TNV, T = (.15, the



LQ-optimal feedback law with respect to the cost

o

Je =Y (€t +Miy), A=10"
i=0
isup, = Ky, K = [—66.0 —19.4}. Determine the maximum steady
state error y — 3y° with this controller if the mass of the load is limited

to the range:
m < 0.5 kg.

(b). Explain how to modify the cost and model dynamics in order to obtain

a stabilizing LQ-optimal controller giving zero steady-state error.
(c). The motor input voltage is subject to the constraints
-1<V <1

A predictive controller is to be designed based on the predicted cost:

oo

1=0

where v; 1) = v, + ;1 is the prediction of the integrated error.

(i). For a predicted input sequence with N degrees of freedom, show
that J. can be re-written as

N-1

Je =Y (p +vd + Xudy) + €N lP
=0

and define £ and P. What is the implied mode 2 feedback law?
(ii). Briefly explain how the constraints on V' can be incorporated in a

robust MPC strategy for this system (i.e. for all values of m in the

range m < 0.5kg).

7. Assume that, for the given initial condition x(0), the optimization of J sub-

ject to the robust constraints determined in Question 6 is initially feasible.



Will the online optimization remain feasible at all future sampling times?
What can be said about the steady-state value of y? Will the optimal value
of the cost necessarily decrease monotonically, and what can be concluded

about the convergence of the state x; to zero in closed-loop operation?

. A production planning problem involves optimizing the quantity u of stock
manufactured in each week. The quantity x of stock that remains unsold
at the start of week k + 1 is given by

Tpi1 =X +ur —wg, k=0,1,...

where the quantity w; that is sold in each week is unknown in advance
but is expected to be equal to a known constant w. Limits on storage and
manufacturing capacities imply that  and u can only take values in the
intervals

0<z, <X, 0<u,<U.

The desired level of stock in storage is z*, and the planned values ug;, uy, . . .
are to be optimized at time k given a measurement of the value of zj by
minimizing a cost

(0]
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(a). What are the advantages of using a receding horizon control strategy
in this application instead of an open-loop control sequence computed
at k =07

(b). Assume that wy = w for all K =0,1,...
(i). Show that the unconstrained optimal control law is uj, = W — ey,

(ii). Show that, for a mode 1 horizon of N, the infinite horizon cost can

be expressed

N

E 2
Jk = 6i‘k )
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and state the corresponding mode 2 feedback law.

(iii). Show that constraints are satisfied over an infinite horizon if 0 <
i < Xand 0 <y, < U for0<i< N -1, and

max{0,w + 2" — U} < xyp, < min{ X, w + 27}
What assumptions on w, z*, U and X are needed?.

(c). Assume now that the future value of w is unknown and may take any
value in an interval: 0 < w; < W. Suggest how to express the planned
sequence gy, Uik, U IN terms of the free variables in the receding
horizon optimization problem, and justify your answer by determining

the predictions ey, ey, €3y



Some answers

1.025 0.0075 0 0.2 0.12
4 1.1
1. (b). H= [0.0075 1.0025 0|, F'= [0.05 0.035| , G =
1.1 0.59
0 0 1 0 0

2. (a). Closed loop poles for N = 3: eig(A+ BL) = 1.01,1.93
(b). N4 5 6 7
eig(A+ BL) | 1.03,1.69 1.11+0.15 0.86%0.10i 0.95,0.58

22.46 4.098
3. (b). In J, replace yz2v|k with ||y |5, P = [ ]

4.098 12.79

4. (d). Jig — Jp < —(yi+ui)

(e). © =0 is locally asymptotically stable

6. (a). |y —¢°| < 0.0106 m in steady state
-
(c). & augmented predicted state, £ = [:1; v} , P: the solution of

A0l B8] \' /4 0
P K| P 2 K| =
c 1o I

Mode 2 feedback law: u = K¢z, e.g. LQ-optimal K¢ = — [201.4 29.6 48.2

C'C 0

B
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8. (c). ujp = W — e + |, where ¢;, = for i =0,..., N — 1 are decision

variables, and ¢;;, = 0 fori > N



