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Model Predictive Control Examples Sheet

Mark Cannon, Hilary Term 2023

Reading: Kouvaritakis & Cannon, Sections 2.1–2.6 and 3.1–3.3

or Maciejowski Chapters 2, 3, 6, 8

Prediction equations

1. A system with model

xk+1 = Axk +Buk, yk = Cxk

A =

[
1 0.1

0 2

]
, B =

[
0

0.5

]
, C =

[
1 0

]
is to be controlled using an unconstrained predictive control law that mini-

mizes the predicted performance cost

Jk =
N−1∑
i=0

(
y2i|k + λu2i|k

)
+ y2N |k, λ = 1.

(a). Show that the state predictions can be written in the form

xk =Mxk + Cuk, uk =

 u0|k
...

uN−1|k

 , xk =

x0|k...

xN |k


and evaluate C and M for a horizon of N = 3.

(b). For N = 3, determine the matrices H, F and G in

Jk = u>kHuk + 2x>k F
>uk + x>kGxk.

(c). Give expressions for the derivatives ∂J/∂ui|k for i = 0, 1, 2. Hence

verify that the gradient of J is ∇uJ = 2Hu+ 2Fx.

2. (a). For the plant model and cost given in Question 1, show that the un-
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constrained predictive control law for N = 3 is linear feedback:

uk = Lxk, L = −
[
0.1948 0.1168

]
.

Hence show that the closed-loop system is unstable.

(b). Write some Matlab code to evaluate M and C for any given N , and

hence determine H and F , for any horizon length N . Show that the

predictive control law does not stabilize the system if N < 6.

Infinite horizon cost and constraints

3. (a). Explain why the predictive control law of Question 1 necessarily stabi-

lizes the system if the cost is minimized subject to xN |k = 0.

(Hint: what is the infinite horizon cost when this constraint is used?)

(b). How would you modify the cost of Question 1 in order to achieve closed

loop stability without including the constraint xN |k = 0? Why would

this be preferable?

4. A predictive controller minimizes the predicted performance index:

Jk =
∞∑
i=0

(
y2i|k + u2i|k

)
at each time-step k subject to input constraints: −1 ≤ ui|k ≤ 2 for all

i ≥ 0. The system output y is related to the control input u via

xk+1 = Axk +Buk, yk = Cxk

A =

[
−2 1

0 1

]
, B =

[
1

1

]
, C =

[
1 1

]
.

(a). Why is the MPC optimization performed repeatedly, at k = 0, 1, 2 . . .,

instead of just once, at k = 0?
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(b). If the mode 2 feedback law is uk =
[
2 −1

]
xk, show that

Jk =
N−1∑
i=0

(
y2i|k + u2i|k

)
+ x>N |k

[
13 −1
−1 2

]
xN |k

where N is the length of the mode 1 prediction horizon.

(c). Show that the constraints

−1 ≤ ui|k ≤ 2, i = 0, 1, . . . , N + 1

ensure that the predictions satisfy −1 ≤ ui|k ≤ 2 for all i ≥ 0.

(d). Derive a bound on J∗k+1 − J∗k , where J∗k is the optimal value of Jk.

Hence show that
∑∞

k=0

(
y2k + u2k

)
≤ J∗0 along trajectories of the closed

loop system.

(e). Is the closed loop system stable? Explain your answer.

5. (a). Explain the function of terminal constraints in a model predictive con-

trol strategy for a system with input or state constraints. Define two

principal properties that must be satisfied by a terminal constraint set.

(b). A discrete time system has the state space model

xk+1 = Axk +Buk, A =

[
0.3 −0.9
−0.4 −2.1

]
, B =

[
0.5

1

]

and constraints

|[x]1 + [x]2| ≤ 1 , |[x]1 − [x]2| ≤ 1 , x =

[
[x]1

[x]2

]

(i). If the terminal feedback law is uk = Kxk, K =
[
0.4 1.8

]
, show

that the following set is a valid terminal constraint set{
x : |[x]1 + [x]2| ≤ 1 , |[x]1 − [x]2| ≤ 1

}
.
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(ii). Describe a procedure for determining the largest terminal constraint

set for the case of a general feedback gain K.

(c). What are the main considerations that govern the choice of the predic-

tion horizon N?

Integral action and disturbances

6. The vertical position y of a machine tool positioning platform is controlled

by a motor which applies a vertical force F to the platform (Figure 1). The

platform has mass M and carries a variable load of mass m; the unloaded

weight of the platform is balanced by a counter-weight. The force F is

proportional to the voltage V applied to the motor, so that F = KV V

where KV is a fixed gain.

counter-weight
mass M

F

platform
mass M

machine tool

variable
mass m

y

Figure 1. Machine tool and positioning platform

Assuming m is small enough that M +m ≈M , the unknown load consti-

tutes a (constant) disturbance in the discrete-time model of the system for

sampling interval T :

xk+1 = Axk +Buk +Dw, ek = Cxk

A =

[
1 T

0 1

]
, B =

KV

2M

[
T 2/2

T

]
, D = − g

2M

[
T 2/2

T

]
, C =

[
1 0

]
where e is the error in y relative to a desired steady-state height y0, and

xk =

[
y(kT )− y0

ẏ(kT )

]
, uk = V (kT ), w = m.

(a). For the model parameters M = 10 kg, KV = 7N V−1, T = 0.1 s, the
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LQ-optimal feedback law with respect to the cost

Jk =
∞∑
i=0

(
e2k+i + λu2k+i

)
, λ = 10−4

is uk = Kxk, K =
[
−66.0 −19.4

]
. Determine the maximum steady

state error y − y0 with this controller if the mass of the load is limited

to the range:

m ≤ 0.5 kg.

(b). Explain how to modify the cost and model dynamics in order to obtain

a stabilizing LQ-optimal controller giving zero steady-state error.

(c). The motor input voltage is subject to the constraints

−1 ≤ V ≤ 1

A predictive controller is to be designed based on the predicted cost:

Jk =
∞∑
i=0

(
e2i|k + v2i|k + λu2i|k

)
, λ = 10−4

where vi+1|k = vi|k + ei|k is the prediction of the integrated error.

(i). For a predicted input sequence with N degrees of freedom, show

that Jk can be re-written as

Jk =
N−1∑
i=0

(
e2i|k + v2i|k + λu2i|k

)
+ ‖ξ>N |k‖2P

and define ξ and P . What is the implied mode 2 feedback law?

(ii). Briefly explain how the constraints on V can be incorporated in a

robust MPC strategy for this system (i.e. for all values of m in the

range m ≤ 0.5 kg).

7. Assume that, for the given initial condition x(0), the optimization of J sub-

ject to the robust constraints determined in Question 6 is initially feasible.
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Will the online optimization remain feasible at all future sampling times?

What can be said about the steady-state value of y? Will the optimal value

of the cost necessarily decrease monotonically, and what can be concluded

about the convergence of the state xk to zero in closed-loop operation?

8. A production planning problem involves optimizing the quantity u of stock

manufactured in each week. The quantity x of stock that remains unsold

at the start of week k + 1 is given by

xk+1 = xk + uk − wk, k = 0, 1, . . .

where the quantity wk that is sold in each week is unknown in advance

but is expected to be equal to a known constant ŵ. Limits on storage and

manufacturing capacities imply that x and u can only take values in the

intervals

0 ≤ xk ≤ X, 0 ≤ uk ≤ U.

The desired level of stock in storage is x∗, and the planned values u0|k, u1|k, . . .

are to be optimized at time k given a measurement of the value of xk by

minimizing a cost

Jk =
∞∑
i=0

e2i|k , ei|k = xi|k − x∗.

(a). What are the advantages of using a receding horizon control strategy

in this application instead of an open-loop control sequence computed

at k = 0?

(b). Assume that wk = ŵ for all k = 0, 1, . . .

(i). Show that the unconstrained optimal control law is uk = ŵ − ek.

(ii). Show that, for a mode 1 horizon of N , the infinite horizon cost can

be expressed

Jk =
N∑
i=0

e2i|k ,
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and state the corresponding mode 2 feedback law.

(iii). Show that constraints are satisfied over an infinite horizon if 0 ≤
xi|k ≤ X and 0 ≤ ui|k ≤ U for 0 ≤ i ≤ N − 1, and

max{0, ŵ + x∗ − U} ≤ xN |k ≤ min{X, ŵ + x∗}.

What assumptions on ŵ, x∗, U and X are needed?.

(c). Assume now that the future value of w is unknown and may take any

value in an interval: 0 ≤ wk ≤ W . Suggest how to express the planned

sequence u0|k, u1|k, u2|k in terms of the free variables in the receding

horizon optimization problem, and justify your answer by determining

the predictions e1|k, e2|k, e3|k.
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Some answers

1. (b). H =

 1.025 0.0075 0

0.0075 1.0025 0

0 0 1

 , F =

 0.2 0.12

0.05 0.035

0 0

 , G =

[
4 1.1

1.1 0.59

]

2. (a). Closed loop poles for N = 3: eig(A+BL) = 1.01, 1.93

(b). N 4 5 6 7

eig(A+BL) 1.03, 1.69 1.11± 0.15i 0.86± 0.10i 0.95,0.58

3. (b). In Jk, replace y2N |k with ‖xN |k‖2P , P =

[
22.46 4.098

4.098 12.79

]

4. (d). J∗k+1 − J∗k ≤ −
(
y2k + u2k

)
(e). x = 0 is locally asymptotically stable

6. (a). |y − y0| ≤ 0.0106m in steady state

(c). ξ: augmented predicted state, ξ =
[
x v

]>
, P : the solution of

P−

([
A 0

C I

]
+

[
B

0

]
Kξ

)>
P

([
A 0

C I

]
+

[
B

0

]
Kξ

)
=

[
C>C 0

0 1

]
+λK>ξ Kξ,

Mode 2 feedback law: u = Kξx, e.g. LQ-optimal Kξ = −
[
201.4 29.6 48.2

]
8. (c). ui|k = ŵ − ei|k + ci|k, where ci|k = for i = 0, . . . , N − 1 are decision

variables, and ci|k = 0 for i ≥ N


