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Lecture 1

Introduction



Organisation

>

>

4 lectures —

Examples class —

LR2, weeks 3 & 4
Monday at 15.00 & Friday at 12.00

recordings available on Canvas

LR3, week 5
Friday at 14:00, 16:00 or 17:00

sign up on Canvas



Course outline

1. Introduction to predictive control
2. Prediction and optimization

3. Closed loop properties

4. Disturbances and integral action

5. Robust tube MPC



Books

> J.M. Maciejowski, Predictive control with constraints. Prentice Hall, 2002

Recommended reading: Chapters 1-3, 6 & 8

> J.B. Rawlings and D.Q. Mayne, Model Predictive Control: Theory and Design. Nob Hill
Publishing, 2009

> B. Kouvaritakis and M. Cannon, Model Predictive Control: Classical, Robust and Stochastic,
Springer 2015

Recommended reading: Chapters 1, 2 & 3



Motivating example: switching control

How does a thermostat regulate room temperature?

Closed loop control system:
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Motivating example: switching control
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System model: Switching controller:
dT CoNTnRolLE
Ca =q—qr STATE
qr = BT on
q=au
U if on
v {0 if OFF ofe

T g ™45 1



Motivating example: switching control
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System model: Closed loop response:
dT — _ —t/T
CE —q—qr T(t) = Tss + (T(0) — Ts)e
qr = ,BT Tss — OéU/ﬂ |f ON
0 if OFF
q=au

U if T_Q
u=go E
0 if OFF



Motivating example: switching control
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System model: Closed loop response:
dr T
C— =¢q-—
dt q—4qL
qr = BT
q=au
U if on
u =
0 if OFF

* Single controller parameter: hysteresis band §
* Accurate models aren't needed to regulate 7" to [T° — &, 70 + 4]



Motivating example: proportional control (P)
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System model: Closed loop response:
dT — _ —t/T
Cdi =q—qr T(t) =T+ (T(O) Tss)e
t _aK 0
qr = BT Tos= ok BT
q=au C
w=K(T° —T) TTaK +

* Controller parameter: gain K
* Tss = T9 and 7 = 0 as K — oo independent of parameters C, «,



Motivating example: proportional control (P)
Controller: uw = K(T° —T)

Effect of increasing gain (ideal case), K1 < Ko < Kj:




Motivating example: proportional control (P)

Controller: uw = K(T° —T)

Actual effect of increasing gain:

—

[

T° 1

Time

High gain K is often de-stabilizing because of:

* nonlinearity, e.g. actuator saturation: u = min{ﬂ, maX{K(TO -1, O}}

* additional dynamics, e.g. sensor and actuator time-delay or lag



Motivating example: proportional + integral control (PI)

Control signal proportional to tracking error and integral of tracking error:

u:K(TO—T)+IT(_/t(T0—T)dt

K2
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* If closed loop system is stable

then T° — T'(t) — 0 as t — oo, i.e. no steady state error
(assuming TV = constant)

* Controller has no knowledge of model parameters
but increasing gain (K/T;) generally degrades transient performance
(overshoot and oscillations)

* Two controller parameters K, T; to be tuned/optimized



Motivating example: PID control

Include the rate of change of tracking error:

K [ d
u=K(T°-T)+ T/ (T° fT)dtJrKTdﬁ(TU -T)
% at
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* The derivative term provides anticipation of future error (“feedforward")

* Three PID gains K, T;, T, need tuning, either using a system model or heuristic rules
(e.g. Ziegler-Nichols)

* PID tuning is difficult with nonlinear dynamics and constraints

* Not obvious how to configure feedback loops for MIMO problems



Controller optimization

Can we optimize controller parameters for a given performance criterion?
o0

e.g. mean square error: _min / E{(T° - T)* + pu?} dt

K.T:i,Ta Jq
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* Optimization of linear controller gains (e.g. K,T;,Ty) is generally nonconvex

* It's more common to optimize over control signals (e.g. LQG control)
oo
min/ E{(T° —T)% + pu?} dt
u
0
Unconstrained linear system = solution is linear state feedback
but no closed-form solution in almost all other cases



Model predictive control

MPC optimizes predicted performance numerically over future control and state trajectories
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*

The optimization is generally easier than optimizing feedback gains
(e.g. convex for linear systems with linear state and input constraints)

*

Single-shot solution is an open loop control signal
MPC updates it by repeating the optimization periodically online

This results in a feedback controller,
providing robustness to model and measurement uncertainty
and compensating for using finite numbers of optimization variables

*



Model predictive control

Prediction using a dynamic model & constraints
Online optimization

Receding horizon implementation

1. Prediction

* Plant model: zx11 = f(ag, uk)

* Simulate forward in time (over a prediction horizon of N steps)

. Uolk . Zolk
predicted e predicted o
input ug = . state Xy = .
sequence | sequence

UN-1|k TNk

Notation: (u;,x;) = predicted i steps ahead | evaluated at time k
Tolk = Tk



Overview of MPC

2. Optimization

N
* Performance cost: J(xp,ug) E Ci (245 i)
1=0

£;(xz,u): stage cost
* Optimize numerically to determine the optimal input sequence:
u; = arg min J(zy, uy)
Ug

= (uak(xk)v T 7u}k\7—1|k($k))

3. Implementation

* Use first element of uy = MPC law: uy, = ug; (z)

* Repeat optimization at each sampling instant £k = 0,1, ...



Overview of MPC

prediction horizon

past predicted time

time



Overview of MPC

prediction horizon at time &

prediction horizon at timeé k+1

time




Example

1.1 2 0
Plant model: Tyl = [ 0 0 95} Tk + [0 0787} "

ye = [-1 1]zy

N—1
Cost: Z yz|k+uz|k +yN|k
1=0

Prediction horizon: N =

Zo|k
Uk !
. . . - _ |1k
Predicted input and state sequences: uy = |uyg |, X =
T2k
U2|k

T3k



Example
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Example
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Example
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Example
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Example
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Model predictive control

Advantages

> Flexible plant model

— multivariable
— linear or nonlinear
— deterministic, stochastic or fuzzy

> Handles constraints on control inputs and states

— actuator limits
— safety, environmental and economic constraints

> Approximately optimal control

Disadvantages

> Requires online optimization

— quadratic programming (QP) problem for linear-quadratic problems
— high computational requirement for nonlinear systems



MPC development

Control strategy reinvented several times

LQG optimal control 1950’s
industrial process control 1980’s
constrained nonlinear MPC  1990's
robust MPC 2000’s
stochastic MPC 2010's

Current research challenges:

high sample rates, long prediction horizons, uncertain & nonlinear models

embedded optimization & sparse solvers
— adaptive and stochastic MPC



Prediction model

Linear plant model: 41 = Az + Bug

> Predicted x;, depends linearly on uy [details in Lecture 2]

> Therefore LQ cost is quadratic in u,,  u, Huy + 2f "ug + g(zy)

and constraints are linear  A.uy < b(xy)

> Online optimization:

min u Hu+2f 'u st Au<b,
u

This is a convex Quadratic Program (QP),
which is reliably and efficiently solvable



Prediction model

Nonlinear plant model: z11 = f(zk, ux)

> Predicted x; depends nonlinearly on uy

> In general the cost is nonconvex in uy: J(xp,ug)

and the constraints are nonconvex:  g.(xg, ux) < 0

> Online optimization:
min J(zg,u) st ge(zg,u) <0
u
— may be nonconvex

— may have local minima

— may not be solvable efficiently or reliably



Prediction model

Discrete time prediction model
> Predictions optimized periodically at ¢t = 0,727, ...
o> Usually T'= T = sampling interval of model

> But T = nT; for any integer n > 1 is possible, (e.g. if Ts < time needed

for online optimization)



Prediction model

Continuous time prediction model

> Predicted u(t) need not be piecewise constant,

e.g. continuous, piecewise linear u(t)

or u(t) = polynomial in ¢ (piecewise quadratic, cubic etc)
> Continuous time prediction models can be solved online

> This course: discrete-time model and T = T assumed

1-24



Constraints

Classify state and input constraints as either hard or soft

> Hard constraints must be satisfied at all times,
if this is not possible, then the problem is infeasible

> Soft constraints can be violated to avoid infeasibility

> Strategies for handling soft constraints:
* impose (hard) constraints on the probability of violating each soft constraint

* or remove active constraints until the problem becomes feasible

1-25



Constraints

Typical methods for handling input constraints:

(a) Saturate the unconstrained control law
(ignore constraints in controller design)

(b) De-tune the unconstrained control law

by increasing the penalty on u in the performance objective

(c) Use an anti-windup strategy to limit the state of a dynamic controller

(typically the integral term of a Pl or PID controller)

(d) Use MPC with inequality-constrained optimization

1-26



Example: input constraints

(a) Effects of controller saturation, u < up <@

unconstrained LQ optimal control: u°(z) = Koz

saturated: u = max{min{u®, 7}, u}

8
w saturated Igr
61 | — — —unconstrained Igr
4t | 4
. |
Input constraints: - |
u<u<u
. _ D) . . . . . . .
uw=-1, u=1 0 5 10 15 20 25 30 35 40
Controller saturation causes 6

* poor performance

* possible instability

0 5 10 15 20 25 30 35 40
sample

1-27



Example: input constraints
(b) Effects of de-tuning the unconstrained optimal control law:

K = optimal gain for LQ cost Z(yi + puj)
k=0

Increase p until u = K,y satisfies constraints (locally)

8

r Igr, R=1000
6 ~ — —lgr, R=0.01
ati 1
= |
Example ! 2k |
p increased from 1072 to 103 ol T e
settling time increased from 6 to 40 _, ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60

* yr — 0 slowly

* stability ensured
(but here the response is
slower than saturated LQR)




Example: input constraints

(c) Effects of Anti-windup:
Anti-windup attempts to avoid instability while control input saturated

Many possible approaches, e.g. anti-windup Pl controller:

u = max{min{(Ke + v),u},u}
Tio+v=u

v

4

gl

1t
u<u<u — uzK(e—&—f/edt)
=

v(t) — u or T exponentially

N

= u or

Heuristic strategy may not prevent instability




Example: input constraints

(d) Comparison with MPC (with prediction horizon N = 16)

Example

MPC vs saturated LQ
(both using the same cost):

* settling time reduced to 20

* stability is guaranteed

|
il

mpc, N=16
— — —saturated Iqr

- - = 4

|

] —
il

Ll

30 35 40

. . . . .
5 10 15 20 25

. .
30 35 40



Summary

> Predict performance using plant model

e.g. linear or nonlinear, discrete or continuous time

> Optimize future (open loop) control sequence

computationally much easier than optimizing over feedback laws

> Implement first sample, then repeat optimization

provides feedback to reduce effect of uncertainty

> Comparison of common methods of handling constraints:

saturation, de-tuning, anti-windup, MPC



Lecture 2

Prediction and optimization



Prediction and optimization

Input and state predictions

@ Unconstrained finite horizon optimal control

Infinite prediction horizons and connection with LQ optimal control
@ Incorporating constraints

@ Quadratic programming



Review of MPC strategy

At each sampling instant:

@ Use a model to predict system behaviour over a finite future horizon
@ Compute a control sequence by solving an online optimization problem
© Apply the first element of optimal control sequence as control input

Advantages
* flexible plant model
* constraints taken into account

* optimal performance

Disadvantage

* online otimization required




Prediction equations

Linear time-invariant model: Ti41 = Az + Buy

assume xy is measured at time k

Uo|k Lo|k
Predictions: ug = : L X = :
UN-1|k TNk
N-1
Quadratic cost: J(xg,ug) Z ||xl‘k||2Q + ||ul|kH%) + ||33N|k”%:’
=0

(Il = 2" Qz, Jlull = u' Ru

P = terminal weighting matrix )



Prediction equations

Linear time-invariant model: Tiy1e = Ami|k + Buy,
assume xy is measured at time k
Lok = Tk
Tk = Az + Bu0|k

TNk = ANl‘k + ANﬁlBuo‘k + ANﬁzBul‘k + -+ BuN—l|lc

I
X, = Mz + Cuy,
I 0 0 e 0
A B
M= | A? . c=| AB B
AN AN-1B AN-2Bp ... B




Prediction equations

Predicted cost:

N-1
Jp = Z (lzaeld + luawllz) + lenel?
1=0

:x;QX/@-I-uZRuk { R = diag{R

Q = diag{Q, ...

,Q, P}
...,R,R}



Prediction equations

Predicted cost:
N-1
Jp = Z (lzaeld + luawllz) + lenel?
i=0

Q = diag{Q,...,Q, P}
=% Qi+ Ry {R_diag{R R, R}

4

Ji = u;—Huk + QxI;'—FTuk + x;—ka

where
H=C"QC+R <+ uxuterms
F=C"QM — u X x terms
G=M"QM +— x X T terms

time-invariant model = H, F, G can be computed offline



Prediction equations — example

Plant model:  xpy1 = Axg + Bug, yr = Cxg

1.1 2
A:[o 0.95}’ B=

r o

0

0
0.079
0.157 0
0.075 0.079
0.323 0.157
0.071  0.075
0.497 0.323
L0.068 0.071

Cost matrices Q = CTC, R=0.01, and P = Q:

(el R el en]

Prediction horizon N = 4: C=

(el e R e e B e N an)

0
0.079
0.157
0.075

0.271 0.122 0.016 —0.034

H=

* 0.086 0.014 —0.020
* * 0.023 —0.007

* * * 0.016

7.589  22.78
G*[ * 103,7]

}, C=[-1 1]
0
0
0
0
0
0
0
0
0
0.079]
0.977 4925
Fo— | 038 2174
~ | oo6 0219
—0.115  —0.618



Prediction equations: LTV model

Linear time-varying model: xp11 = Agxy + Bruyg

assume x is measured at time k

Predictions: Tk = Tk
Tk = ApTi + Brug)k
Top = Ap1AkTk + Agr1Bruoix + Brpiuge

0
Tk = H Ak+jxk+ci(k)uk, t=0,....,N
j=i—1
1 2
Ci(k) = |JH A+ By, H Ag+iBrs1 -+ Bgyi-1 0
j=i—1 j=i—1

* H?:i_l Aptj = Apyi—1--- A for i > 1 and HO Apt; =0fori=0

j=i—1

* H(k), F(k), G(k) depend on k and must be computed online



Unconstrained optimization

Minimize cost: u* =argminJ, J=u'Hu+2z Flu+z Gz
u

differentiate w.r.t. u: VyJ =2Hu+2Fz =0

2
u=-H 'Fz
=u* if H is positive definite i.e. if H >0



Unconstrained optimization

Minimize cost: u* =argminJ, J=u'Hu+2z Flu+z Gz
u

differentiate w.r.t. w: VyJ =2Hu+2Fx =0

2
u=-H 'Fz
=u* if H is positive definite i.e. if H >0

R-0&Q,P=0 or

Here H = CTQC+R > 0 if
ere QC+ ! {REQ&Q,P>-O&CistII—rank

(A, B) controllable

Receding horizon controller is linear state feedback:
U = — [I 0 .- O] H 'Fgy,

is the closed loop response optimal? is it even stable?



Example

N-1
Model: A, B, C as before, cost: Ji, = Z (yﬁk + 0.0luf‘k) + y?\”k
=0
—4.36 —18.7
o . g1 | 164 124
» For N=4: u,=-H Fax, = 141 300 | Tk
0.59  1.83
up = [-4.36  —18.7]
» For general N:  wy = L(N)xy
\ N =4 N=3 N=2 N=1
L(N) | [-4.36 —18.69] [-3.80 —16.98] [1.22 —3.95] [5.35 5.10]
A(A+ BL(N)) 0.29 +0.175 0.36 + 0.22j 1.36,0.38 2.15,0.30

stable stable unstable unstable



Example

Horizon: N =4, 29 = (0.5, —0.5)

—=o— closed-loop
— + — predicted ||

2 4 6 8 10
sample, k



Example

Horizon: N =3, 29 = (0.5, —0.5)
10 T T
5K 4
El
of S
I—
5 I .
o] 2 8 10
1 T
—=o— closed-loop
05 = — + — predicted | |
> of
-0.5F 1
1 . .
0 2 8 10

sample, k



Example

Horizon: N =2, 29 = (0.5, —0.5)

5 . . . n
0 2 4 6 8 10

sample, k




Example

Horizon: N =2, 29 = (0.5, —0.5)

¥77***$—7};7:\P A O G
L R B | | 4
+- -4 I
+- - )
[
2 4 6 8

Observation: big differences exist between predicted and closed loop responses for small N

2 4 6 8
sample, k

10



Receding horizon control

Why is this example unstable for N < 27

Impulse response

System is non-minimum phase

¢

impulse response changes sign >

4

therefore short horizon causes instability

Solution:
* use an infinite horizon cost

* but keep a finite number of optimization variables in predictions

4 6 8 10
sample



Dual mode predictions

An infinite prediction horizon is possible with dual mode predictions:

optimization variables ¢=0,...,N —1, mode 1l
Uj\p =
T K, i=N,N+1,... mode?2
0 . >
] L N-1N i
) mode 1 ) mode 2

optimized explicitly feedback law: u = K«

Feedback gain K: stabilizing and determined offline

e.g. unconstrained LQ optimal for 3% ([lz4l|3) + [luill%)



Infinite horizon cost

If the predicted input sequence is

{Uojky -+ s UN—11ks KNy KPT N, - - -}
then
o0 N-1
D lalld + llwarl®) = D (lwaglld + lwielz) + ol b
i=0 i=0
where

P—(A+BK)'P(A+BK)=Q+ K'RK

Lyapunov matrix equation (discrete time)




Infinite horizon cost

If the predicted input sequence is

{Uojky -+ s UN—11ks KNy KPT N, - - -}
then
o0 N-1
D lalld + llwarl®) = D lwaelld + lwaellz) + lexel?
i=0 i=0
where

P—(A+BK)'P(A+BK)=Q+ K'RK

Lyapunov matrix equation (discrete time)

* If @+ KTRK > 0, then the solution P is unique and P >~ 0

* Matlab: P = dlyap(Phi’,RHS);
Phi = A+B*K; RHS = Q+K’*R#K;

* P is equal to the steady state Riccati equation solution if K is LQ optimal



Infinite horizon cost

Proof that the predicted cost over the mode 2 horizon is ||z x|/ %:

Let J(z) =Y (il + lluil}), with w; = Kaj, w41 = @a; Vi

i=0 To =T



Infinite horizon cost

Proof that the predicted cost over the mode 2 horizon is ||z x|/ %:

Let JOO(T) = Z(sz”é + ||uz||%), with U; = K.’L‘i, Ti41 = @mi Vi
=0 To =T
~ then J*(2) =Y (¢T®" Q¥'w + 2T KTd! RE®x)
=0
= [Z "(Q+ KTRE)®' |z = [|lz||3
=0
=P

~ but ®TPD= Zqﬂ (Q + KTRK)®'
i=1

—(Q+ K"RK)
so P-®'Pd=Q+K'RK



Connection with LQ optimal control

N-1
Let J (g, uy) Z (liwlly + lwielz) + llenxl?

=

—(A+ BK) P(A+BK)=Q+K'"RK, K =LQ optimal

Then the solution of the unconstrained optimization satisfies

* * . * *
g, = Kxj, where uj, = argmumj(xk,u) = (Uggs- s UN—11k)

since

. e [ wk = A{uopk, -+, un 1)k} s optimal
{uok, u1,k, - ..} is optimal iff ) i
and {un|k, Un 41|k, - - -} is optimal



Connection with LQ optimal control — example

» Model parameters (A, B, C') as before
LQ optimal gain for Q =CTC, R=0.01: K = [74.36 718.74]

Lyapunov equation solution: P= 3.92 4.83
yap q : - 13.86
» Cost matrices for N = 4:
1.44 0.98 0.59 0.26 3.67 239
* 0.72 0.44 0.20 237 16.2 13.8 66.7
=14 % o030 o14| "= |136 950 €7 [ * 413}
* * * 0.096 0.556 4.18
» Predictive control law: u = — [1 0 0 0] H ™ 'Fay,

= [-4.35 —18.74] ay,



Connection with LQ optimal control — example

» Response for N =4, xo = (0.5, —0.5)

MO N A O ®
—

05F T T T T ]
—o—closed loop
—+— predicted

-0.5F

sample, k

Infinite horizon cost

. —> identical predicted and closed loop responses
no constraints



Dual mode predictions

Pre-stabilize predictions to provide better numerical stability:

> Control inputs

mode 1
mode 2
> States
mode 1
mode 2
where (cojp, .-

Uil = K + i, i=0,1,...,N—1

xi—&—l\k = @xi‘k +Bci|k, 1= 0,1,...,N -1
xi+1\7€ = @xi‘k, L= N,N—Fl,

.,CN—1]|) are optimization variables



Dual mode predictions

Pre-stabilize predictions to provide better numerical stability:

> Vectorized form: X = Mz + Cey,
Lo|k Colk
Xp 1= , Ck:1= :
ITN|k CN—1|k
I 0 0
P B
M= g C = oB B
(I).N (I)N._IB (I)N._QB

> Cost: J(:U;€7 (Uo|ks - - - 7uN_Hk)) = J(xk, ck)



Input and state constraints

Infinite horizon unconstrained MPC = LQ optimal control

but MPC can also handle constraints

Consider constraints applied to mode 1 predictions:

* input constraints: u <wu;p <u, 1=0,...,N—1
+
I T u=[u" a']
<= _7 u, < | where T
u u= [g‘r @T}
* state constraints: z <z, <7, 1=1,...,N
C z —A .
= [_éi]ukg[_m]qL{Ai}xk, i1=1,...,N



Input and state constraints

Constraints on mode 1 predictions can be expressed
Acuk S bc + Bcl'k

where A., B.,b. can be computed offline since model is time-invariant

The online optimization is a quadratic program (QP):

minimize u' Hu+ 2z F'u
u

subject to  A.u < b, + B.xy

which is a convex optimization problem with a unique solution if

H =C"QC+R is positive definite



QP solvers: (a) Active set

Consider the QP: u* = argmin u'Hu+2fTu
u
subject to Au <b
and let (A;,b;) = ith row/element of (A,b)

>> Individual constraints are active or inactive

active \ inactive

Aiu*:bi, Viel Azl.l>k < b;, VZg:Z
b; affects solution b; does not affect solution



QP solvers: (a) Active set

Consider the QP: u* = argmin u'Hu+2fTu
u
subject to Au <b
and let (A;,b;) = ith row/element of (A,b)

>> Individual constraints are active or inactive

active \ inactive
Au*=b;, Viel A;u* < b, V’ng
b; affects solution b; does not affect solution
> Equality constraint problem: u* = argmin u'Hu+2f"Tu
u

subject to A;u=1b;, VieT

> Solve QP by searching for 7

* one equality constraint problem solved at each iteration
* optimality conditions (KKT conditions) identify solution



Active constraints — example

25

-1
-15 \
-2 P

-2.5
-3 -2

A QP problem with 5 inequality constraints
active set at solution: Z = {2}



Active constraints — example

25

An equivalent equality constraint problem



QP solvers: (a) Active set

> Computation:

O(N3n32) additions/multiplications per iteration (conservative estimate)

upper bound on number of iterations is exponential in problem size

> At each iteration choose trial active set using: cost gradient
Lagrange multipliers (constraint sensitivities)

The number of iterations needed is often small in practice

> In MPC uj = u*(zx) and I, = Z(xy)

hence initialize solver at time k using the solution computed at k£ — 1



QP solvers: (b) Interior point

> Solve an unconstrained problem at each iteration:
u(p) = minp(u’ Hu+2f"a) + ¢(u)
u

where
¢(u) = barrier function (¢ — oo at constraints)

u—uaspu— oo

Increase u until ¢p(u*) > 1/e (e = user-defined tolerance)



QP solvers: (b) Interior point

> Solve an unconstrained problem at each iteration:

u(p) = minp(u’ Hu+2f"a) + ¢(u)

where
¢(u) = barrier function (¢ — oo at constraints)
u—u*aspy— o

Increase u until ¢p(u*) > 1/e (e = user-defined tolerance)

I> # arithmetic operations per iteration is constant, e.g. O(N3n3)
# iterations for given ¢ is polynomial in problem size
\
Computational advantages for large-scale problems
e.g. # variables > 102, # constraints > 103

> No general method for initializing at solution estimate



Interior point method — example

10

il u"Hu+2fTu

0 1 1
-0.5 0 0.5

u(p) >u*=1laspu— o0
but min, p(u” Hu+ 2" u) + ¢(u) becomes ill-conditioned as p — oo



QP solvers: (c) Multiparametric

Let u*(r) = argmin u' Hu+22"FTu
u
subject to Au < b+ Bx

then:
* u* is a continous function of x

* u*(z) = Kz + k; for all 2 in a polytopic set X;

> In principle each K, k; and X; can be determined offline

> Large number of sets X; (combinatorial in problem size)
so online determination of j such that z;, € & is difficult



Multiparametric QP — example

o
n
N
o
o

-8 -6 -4 -2
X1

Model: (A, B,C) as before,
cost: Q =CTC, R=1, horizon: N =10
constraints: —1 <u <1, -1<2/8<1



Summary

Uk
> Predicted control inputs:  ug = :
|UN—1|k
_901|k
and states: x; = : = Mz + Cuy
LNk

N-1
> Predicted cost: J(zg,ux) = Z lz36llE + lwallz) + lznel?

1=

;Huk + 2z} Fluy, + 2} Gy,

> Online optimization subject to linear state and input constraints is a QP:
minimize u' Hu+ kaTFTu
u

subject to A.u < b, + B.xy



Lecture 3

Closed loop properties of MPC



Closed loop properties of MPC

Review: infinite horizon cost

@ Infinite horizon predictive control with constraints

Closed loop stability

Constraint-checking horizon

@ Connection with constrained optimal control



Review: infinite horizon cost

Short prediction horizons cause poor performance and instability, so

o0
* use an infinite horizon cost: J(xp,ug) = Z(Hx”kHzQ + [Juig %)
i=0

* keep optimization finite-dimensional by using dual mode predictions:

optimization variables ¢=0,...,N —1, mode 1l
Uj\p =
T K i=N,N+1,... mode?2
Uo|k
mode 1: u, = : uy, optimized online
UN—1|k

mode 2: i = Ky, K chosen offline



Review: infinite horizon cost

o0
r> Cost for mode 2: Z (lzaelld + luael®) = llenel?
i=N

P is the solution of the Lyapunov equation

—(A+BK)"P(A+BK)=Q+ K'RK

> Infinite horizon cost:

N-1
J(xr, uk) Z lzielld + llwaelR) + e l?

i=

gHuk + 2z FTuy + z Gy,



Review: MPC online optimization

> Unconstrained optimization: VyJ(z,u*) =2Hu* 4+ 2Fz =0, so
u*(z) = —H 'Fx

— linear controller: u, = Kmpcxy
Kmpc = LQ-optimal if K = LQ-optimal (in mode 2)
> Constrained optimization:

u”(r) = argmin u ' Hu+2z"F'u

subject to A.u < b, + B.x

= nonlinear controller: uy, = Kyvpc(xg)



Constrained MPC — example

> Plant model:

Tpt1 = Az + Bug,  yr = Cay,

L1 2 0
A= [o 0.95]’ B= {0.0787}’ ¢=[-1 1]

Constraints: 1<y, <1

> MPC optimization (constraints applied only to mode 1 predictions):

N-1
minimize Z (lzaelldy + Nl R) + 12 lE
i=0
subject to

~1<up <1, i=0,...,N—1

Q=C"C,R=001, N=2
... performance? stability?



Constrained MPC — example

Closed loop response for zo = (0.8, —0.8)

0 20

40 60 80 100

-100

-150

! ! !

-200 y

40 60 80 100
sample, k

unstable



Constrained MPC — example

Closed loop response for zo = (0.5, —0.5)

40 60 80 100
6
4+ 4
> 2F -
0
P . , , ,
0 20 40 60 80 100
sample, k
stable, but ...



Constrained MPC — example

Optimal predicted cost zg = (0.5, —0.5)

Predicted cost J(k)
N w by
o o o

[
o

0 L L L L
0 20 40 60 80 100
sample, k

...increasing J;; = closed loop response does not follow predicted trajectory



Stability analysis

How can we guarantee the closed loop stability of MPC?

(a). Show that a Lyapunov function exists demonstrating stability

> For Lyapunov stability analysis:
* consider first the unconstrained problem
* use predicted cost as a trial Lyapunov function



Stability analysis

How can we guarantee the closed loop stability of MPC?

(a). Show that a Lyapunov function exists demonstrating stability
(b). Ensure that optimization feasible is at each time k =0,1,...

o> For Lyapunov stability analysis:
* consider first the unconstrained problem
* use predicted cost as a trial Lyapunov function

> Guarantee feasibility of the MPC optimization recursively
by ensuring that feasibility at time k implies feasibility at k£ + 1



Discrete time Lyapunov stability

Consider the system 11 = f(x), with f(0) =0

o> Definition: = 0 is a stable equilibrium point if
maxy, ||| can be made arbitrarily small

by making x sufficiently small

> If continuously differentiable V(x) exists with
(i). V(x) is positive definite and
(il). V(zgy1) —V(zg) <0

then x = 0 is a stable equilibrium point



Discrete time Lyapunov stability

Consider the system 11 = f(x), with f(0) =0

o> Definition: = 0 is a stable equilibrium point if
for all R > 0 there exists r such that
lzo]l <7 = Jlzk]| < R for all k

> If continuously differentiable V(x) exists with
(i). V(x) is positive definite and
(il). V(zgy1) —V(zg) <0

then x = 0 is a stable equilibrium point



Discrete time Lyapunov stability

Consider the system 11 = f(x), with f(0) =0

> Definition: = = 0 is an asymptotically stable equilibrium point if
(i). x =0s stable and
(ii). 7 exists such that ||zo]| <r = lim 23, =0
k—o0

> If continuously differentiable V' (z) exists with
(i). V(x) is positive definite and
(ii). V(zk+1) — V(xr) < 0 whenever xy, # 0

then x = 0 is an asymptotically stable equilibrium point



Lyapunov stability

Trial Lyapunov function:

J*(zg) = J(xp,uj)

oo

where J(z, k) = Y (lzilld + luixl%)
1=0

* J*(x) is positive definite if:
(a). R>0and Q >0, or
(b). R>=0and Q = 0and (4,Q"?) is observable

since then J*(zx) > 0 and J*(xx) = 0 if and only if 2, =0

* J*(z) is continuously differentiable

... from analysis of MPC optimization as a multiparametric QP



Lyapunov stability

Construct a bound on J*(z41) — J*(2x) using the “tail” of the

uA

tail at £+ 1

-

L

o1 L~ N—1! N

>

optimal at k

optimal prediction at time k

Optimal predicted sequences at time k:

- e -
Uo |k

*
Uy |k

*

UN_1|k
*

KxN‘k

T *

- . -
Lok
*
L1k

*
ITN|k
*
<I>mN‘k

(® = A+ BK)



Lyapunov stability

Construct a bound on J*(z41) — J*(2x) using the “tail” of the

uA

tail at £+ 1

-

L

o1 L~ N—1! N

>

optimal at k

optimal prediction at time k

Tail sequences at time k£ + 1:

Ug1

X
Uk

«
UN—1]k
*
Klek
*
Koz,

- .-
L1k

*
T

bt Nk
Xk+1 = |

"
Pk
2 %
[ TNk

(® = A+ BK)



Lyapunov stability

Construct a bound on J*(z41) — J*(2x) using the “tail” of the
optimal prediction at time k

Tail sequences at time k£ + 1:

. Uy T,
ua  tailatk+1
* *
~ UN—11k | & TNk
Up+1 = Xk+1 = *
: . Kx}‘\flk (I)QxN\k
ol1 [~ N-1| N i Koxy, Q7w
optimal at k : :
(® = A+ BK)

optimal at k= J*(zx) = J(xk, up) 508 + [l %)

tail at k10 J(@per) = J(@per, pe) el + )

:i’;(
zi(



Lyapunov stability

Construct a bound on J*(xi41) — J*(xx) using the “tail” of the
optimal prediction at time k

Predicted cost for the tail:

J(@rer) = T (@) = el — luelk

but U1 is suboptimal at time k£ 4 1, so

J*(@r41) < J(wrg1)

Therefore

T (@pg1) < T (@) — |2ellg — lluellR




Lyapunov stability

The bound J*(xp41) — J* (1) < —[|ax g — llurl|% implies:

(i). the closed loop cost cannot exceed the initial predicted cost,
since summing both sides over all k£ > 0 gives

D (leld + lurlh) < 77 (xo)
k=0

(ii). =0 is asymptotically stable
* if R >0 and @ > 0, this follows from Lyapunov's direct method

* if R>0,Q >0 and (4, Q1/2) observable, this follows from:

(a). stability of z =0 < Lyapunov’s direct method
(b). kli_{go(HMHQQ +lluilr) =0 <= 320 (lewlld + llurl%) < oo



Stability analysis

How can we guarantee the closed loop stability of MPC?

(a). Show that a Lyapunov function exists demonstrating stability
(b). Ensure that optimization feasible is at each time k =0,1,...

> For Lyapunov stability analysis:
* consider first the unconstrained problem
* use predicted cost as a trial Lyapunov function

> Guarantee feasibility of the MPC optimization recursively
by ensuring that feasibility at time k¥ = feasibility at k + 1



Stability analysis

How can we guarantee the closed loop stability of MPC?

(b). Ensure that optimization feasible is at each time k =0,1,...

> Guarantee feasibility of the MPC optimization recursively
by ensuring that feasibility at time k& = feasibility at k + 1



Terminal constraint

The basic idea

more sophisticated controller needed to satisfy constraints

stabilizing linear controller satisfies constraints



Terminal constraint

Terminal constraint: x|, € §2, where ) = terminal set

L1k
T
& Q = safe region
TNk for mode 2
control law
TN—-1|k
TN+1|k
Choose (2 so that:
u< Kzx<u
(a. ze) = _
r<zr<=Z

(b). 2 = (A+BK)xeQ

then  is invariant for the mode 2 dynamics and constraints, so

U< U S U

TNk € = { fori=N,N+1,...

T< Ty <7T

i.e. constraints are satisfied over
the infinite mode 2 prediction horizon



Stability of constrained MPC

Prototype MPC algorithm
At each time £ =0,1,...
(i). solve uj zargrrlllikn J(zg, uy)
st u<wup<w, i=0,...,N—-1
<y, <T, i=1,...,N
TNk € Q

(ii). apply ug = ug), to the system

Asymptotically stabilizes © = 0 with region of attraction Fy,
u<u; <u, 1=0,....,N—1
Fn =< xo:3{ug,...,uny_1} suchthat z <z, <%, i=1,...,N
zy €Q
= the set of all feasible initial conditions for N-step horizon
and terminal set



Terminal constraints

Make 2 as large as possible so that the feasible set F is maximized, i.e.

Q=X = lim X

J—00

where

* X = initial conditions for which constraints are satisfied for j steps
_ with u = Kz
{ u< K(A+BK)z<u | }
=3T: i =0, )]
< (A+BK)z<TZ

* Xy = A&, for some finite v if |eig(A + BK)| < 1

4

x € X if constraints are satisfied on a finite constraint checking horizon



Terminal constraints — Example

Plant model: Trt1 = Axy + Buyg, yr = Cxy
1.1 2 0
A= [0 0.95} B= {0.0787} C=[-11]
input constraints: -1 <y, <1

mode 2 feedback law: K = [—1.19 —7.88]
=KqforQ=C"C, R=1



Terminal constraints — example

Constraints: —1 <u <1

Kr=1

0.8

0.4

0.2

0.6 A

Xo

— Kox = —1




Terminal constraints — example

Constraints: —1 <u <1

| g
/)

X

—— K®&x = -1

— Kox = —1




Terminal constraints — example

Constraints: —1 <u <1

0.8

0.6
Kr=1—
0.4
Kdx = 1—
0.2
L K% = -1

x 0 XQ
K®%z =1

-0.2
—r— Kdz = -1

— Kox = —1

|
o
o
o



Terminal constraints — example

Constraints: —1 <u <1

>

N

-5 0

Xy

X4=X5=~-=X]-forallj>4sz4=Xoo



Terminal constraints — example

In this example X, is determined in a finite number of steps because

@ (A + BK) is strictly stable, and
Q ((A + BK), K) is observable

° {shortest distance of hyperplane} 1
= 4 = .
K(A+ BK)'x < 1 from origin |K(A+ BK)|2

— 00 ast— o0

@ = X, is bounded because xg ¢ X if x¢ is sufficiently large



Terminal constraints — example

In this example X, is determined in a finite number of steps because

@ (A+ BK) is strictly stable, and
Q ((A + BK), K) is observable

{shortest distance of hyperplane} 1
K(A+ BK)'z <1 from origin ~ ||K(A+ BK)i||,

— 00 ast— o0

@ = X, is bounded because xg ¢ X if x¢ is sufficiently large

Here {z : —1 < K(A + BK)'z < 1} contains X for i > 4
4
X = X,

constraint checking horizon: v =4



Terminal constraints

General case

® strictly stable

Let X ={z:F®x<1,i=0,...5} with {(q),F) observable
(). X = A&, for finite v

then: N .
(ii). X, = X iff 2 € X1 whenever z € X,

Proof of (ii)
(a). forany j, Xjp1 =X, N{z: F&' Tz <1}

SO Xj 2 Xj+1 2 llm]_>oo Xj = XOO

(b). if x € X411 whenever z € &, then &z € X, whenever x € X,

but X, C {x cFr < 1} and it follows that X, C X

(a) & (b) = X, = X



Terminal constraints — constraint checking horizon

Algorithm for computing constraint checking horizon N,
for input constraints u < u < u:

N=0

ma;

u, =max K(A+BK)""'x st u<K(A+BK)x<u, i=
X

mij

u, =min K(A+BK)""'x st u<K(A+BK)x<u, i=
X

2 linear programs
solved at each step




Constrained MPC

Define the terminal set 2 as Xy,

MPC algorithm
At each time £ =0,1, ...
(i). solve wuj =argmin J(zy,u)
uy
st. u<ur <, 1=0,...,N+ N,
QSZEZU{;SE, Z:177N+Nc

(ii). apply ug = ug, to the system

Note
xz\k = (A + BK)l_N.TN“C

* predictions for i = N,... N + N,: { i—N

* x|k € Xn, implies linear constraints so online optimization is a QP



Closed loop performance

Longer horizon N ensures improved predicted cost J*(zg)

and is likely (but not certain) to give better closed-loop performance

7.5,0.5)

= (—

N | 6 7 § 11 >11
J*(xo) | 364.2 357.0 356.3 356.0 356.0
Ja(zo) | 356.0 356.0 356.0 356.0 356.0

Example: Cost vs IV for zq

Closed loop cost: Jei(0) == Yo (llzxllg + llurllz)

For this initial condition:

MPC with N = 11 is identical to constrained LQ optimal control (N = co)!



Closed loop performance — example

Predicted and closed loop inputs for N = 6

—6— predicted
—+— closed-loop

0.8

0.6

0.4

0.2

input, u
o

0 5 10 15 20 25 30
time step, k



Closed loop performance — example

Predicted and closed loop states for N = 6

0.8

0.7

0.6

0.5F

0.4

0.2f

0.1F




Closed loop performance — example

Predicted and closed loop states for N = 11

0.8 T T T T T

—e— predicted
—+— closed-loop

0.7}

0.6

05F

04F

03F

0.2}

0.1F

-0.1




Choice of mode 1 horizon — performance

> For this zo: N = 11 = x| lies in the interior of

v

terminal constraint is inactive

4

no reduction in cost for N > 11

> Constrained LQ optimal performance is always obtained with N > N,
for some finite N, dependent on x

> Ny may be large, implying high computational load
but closed loop performance is often close to optimal for N < N,
(due to receding horizon)

in this example J.j(xg) = optimal for N > 6



Choice of mode 1 horizon — region of attraction

Increasing N increases the feasible set Fy

1.5

0.5




Summary

> Linear MPC ingredients:

* Infinite cost horizon (via terminal cost)

% Terminal constraints (via constraint-checking horizon)

o> Constraints are satisfied over an infinite prediction horizon

> Closed-loop system is asymptotically stable
with region of attraction equal to the set of feasible initial conditions

> ldeal optimal performance if mode 1 horizon NV is large enough



Lecture 4

Robustness to disturbances



Robustness to disturbances

@ Review of nominal model predictive control

Setpoint tracking and integral action

@ Robustness to unknown disturbances

Handling time-varying disturbances



Review

MPC with guaranteed stability — the basic idea

more sophisticated controller needed to satisfy constraints

stabilizing linear controller satisfies constraints



Review
MPC optimization for linear model xy41 = Az + Bug

N-1
minlillglize Z (Hfﬁuk”é + ||ui\k||§a) + ||$N\k||§>
i=0

subject to  u < wuy <u, i =0,...,N+ N,
£§$z|k <z 22135N+Nc

where
* U, = Ky, for i > N, with K = unconstrained LQ optimal



Review
MPC optimization for linear model xy41 = Az + Bug

N-1
minlilinize Z (HfCukHé + ||Uz‘\k||§3) + ||$N\k||§>
i=0

subject to u < <u, 1=0,...,N+ N,
z<xp <7, i=1,...,N+ N,

where
* Ui = Kz, for i > N, with K = unconstrained LQ optimal

oo}

* terminal cost: [lanllp = D (lzaelld + llwel%), with
1=N

P-3TPd=Q+K"RK, ®=A+BK



Review
MPC optimization for linear model xy41 = Az + Bug

N-1
minlilinize Z (H%‘\k”é + ||Uz'\k||§3) + ||$N\k||§3
i=0

subject to u < <u, 1=0,...,N+ N,
z<xp <7, i=1,...,N+ N,

where
* Ui = Kz, for i > N, with K = unconstrained LQ optimal

* terminal cost: [lanllp = D (lzaelld + llwel%), with
1=N
P-3TPd=Q+K"RK, ®=A+BK

* terminal constraints are defined by the constraint checking horizon N.:

u< K&z <u| . u< KoNetlp <7
i — Z—O,...,NC —_— £S¢N6+1xsf



Review

MPC optimization for nonlinear model 241 = f(zg, ug)

minimize
uy

subject to

N-1

1zl + luael®) + lznwl?
=0
u<lwp<u, i=0,...,N—1
z<mp <7, i=1,...,N-1
TN|k e

with

* mode 2 feedback: wu;, = r(z;%) asymptotically stabilizes = 0 (locally)




Review

MPC optimization for nonlinear model 241 = f(zg, ug)

minimize
uy

subject to

1zl + luael®) + lznwl?

ESU”kSﬂ,Z:O, aN_l
&Smﬂkgjvl:la 7N_1
.’EN‘kEQ

with

* mode 2 feedback: wu;, = r(z;%) asymptotically stabilizes = 0 (locally)

o0
* terminal cost: [lonilp > D (lzielld + luwiellz)
1=N

for mode 2 dynamics: x; 1), = f(z”k,m(xi‘k))




Review

MPC optimization for nonlinear model 241 = f(zg, ug)

minimize
uy

subject to

1zl + luael®) + lznwl?

ﬂg’uquﬂ,Z:O, aN_l
&Smﬂkgjvl:la 7N_1
(EN‘kEQ

with

* mode 2 feedback: wu;, = r(z;%) asymptotically stabilizes = 0 (locally)

o0
* terminal cost: [lonilp > D (lzielld + luwiellz)
1=N

for mode 2 dynamics: x; 1), = f(z”k,/e(x“k))

* terminal constraint set {2: invariant for mode 2 dynamics and constraints

f(:c, H(I)) cN

u<k(r)<u z<z<T

} for all z € Q




Comparison

>> Linear MPC

terminal cost

terminal constraint set

> Nonlinear MPC

terminal cost

terminal constraint set

exact cost over the mode 2 horizon

contains all feasible initial conditions
for mode 2

upper bound on cost over
mode 2 horizon

invariant set (usually not the largest)
for mode 2 dynamics and constraints



Model uncertainty




Model uncertainty

Uncertain
model,
robust
constraints

Stochastic
model,
probabilistic
constraints

Nominal,
constrained

Nominal,
unconstrained




Model uncertainty

Robust

Stochastic Uncertain
model, model, MPC
probabilistic robust

constraints constraints

Classical
MPC

Stochastic
MPC

LQ-optimal
control




Model uncertainty

Common causes of model error and uncertainty:

» Unknown or time-varying model parameters

> unknown loads & inertias, static friction

> unknown d.c. gain

» Random (stochastic) model parameters

> random process noise or sensor noise

» Incomplete measurement of states

> state estimation error



Setpoint tracking

» Output setpoint: 7°
D 2% = Az® + Bu®

0
— = where
vy {u —u° 0= 0z
U

v’ =C(I—A)~"'Bu’

» Setpoint for (u%, 2°) is unique iff C(I — A)~!B is invertible

. . u® = (C(I — A)"LB) ™ 1y®
e.g. if dim(u) = dim(y), then
g it dim) = dimy), then { * 7 ) G

u <
» Tracking problem: y; — 3% subject to {;
<

IS

is only feasible if



Setpoint tracking

» Unconstrained tracking problem:

oo
.. & 4
minimize Z(Hx”kﬂé + ||Uz|k||§%)
8 i=0

where 2% =z — 20

w =u—ud

has optimal solution: uy = Kz +u°, K = K|q

» Constrained tracking problem:

o0
DR 5 12 o 12
minimize Y ([|2f,[13 + ufll%)
Wk i=0
subject to gguf|k+u0§m 1=0,1,...
z<a,+2" <z, i=12,...
has optimal solution: u; = ugi“k +uf



Setpoint tracking

If 4° is used instead of u° (e.g. if d.c. gain C(I — A)~' B unknown)

then uy = ugrk + 40 implies
up, = ugfy + (4° — )
xiﬂ = Axj + Bugrk + B (i —u°)
——

constant disturbance

and if ung — Kxi as k — oo, then
Jim 20 =(I—-A—-BK)'B@a°—u%)  #0
—00

Jim g — W' =C(I—-A—-BK)'B@® - #0
hde el

steady state tracking error



Additive disturbances

Convert (constant) setpoint tracking problem into a regulation problem:
)

ze—2, ye—y’ uu

Consider the effect of additive disturbance w:
Tr+1 = Az + Buy + Dwy,

yr = Cxy,



Additive disturbances

Convert (constant) setpoint tracking problem into a regulation problem:

z 2 y—y°, u—ud

Consider the effect of additive disturbance w:
Tr+1 = Az + Buy + Dwy,
yr = Cxy,

Assume that wy, is unknown at time k, but is known to be:

* constant (wy = w for all k) or time-varying

* within a known polytopic set: wy € W for all k

where W = conv{w®,... w} w®

oo W={w:Hw<1}

>



Integral action (no constraints)

Introduce integral action to remove steady state error in y
by considering the augmented system:

A 0 B D
2k = [iﬂ ) Zk+1 = [C’ I} 2k + [0] U + [O} Wi

v = integrator state
Vk41 = Uk + Yk

* Linear feedback wuy = K + Krug

eig([AJrBK BKID‘ <1

is stabilizing if C 7




Integral action (no constraints)

Introduce integral action to remove steady state error in y
by considering the augmented system:

A 0 B D
2k = [Zj ) Zk+1 = [C’ I} 2k + [0] U + [O} Wi

v = integrator state
Vk41 = Uk + Yk

* Linear feedback wui = Kz + Krug

eig([A+BK BKID‘ <1

is stabilizing if C 7

* If the closed-loop system is (strictly) stable and wy — w = constant
then wup - u®® = vy —2v¥ = gy —>0 evenifw#0

but arbitrary K; may destabilize the closed loop system



Integral action (no constraints)

Ensure stability by using a modified cost:

o Q 0
mingnize (Il + luelh) Q2= |§ o] =0
=0

with predictions generated by an augmented model
A 0 B Tk
Zirllk = | 1l Filk + o | Yilk> 20|k = o

* this is a “nominal” prediction model since wy = 0 is assumed

* unconstrained solution: up = K,z = Kz + Kjvg

. A 0] | O . _
* if R >0, ({C I] , [0 QI]) is observable and wy — w = constant

then up —»>u*® = v >0 = yp—0



Integral action — example

Plant model:

Tp41 = Az + Bug + Dw yr = Cxp
11 2 0 1
A= [ 0 0.95] b= {0.0787} b= M c=[-1 1]

Constraints: none

ctc o

0 0.01}}31

Cost weighting matrices: @, = [

Unconstrained LQ optimal feedback gain:
K.=[-1.625 —9.033 0.069]



Integral action — example

N W A

+ integrator
— — no integrator| 1

50

-1 1 1 1
0 10 20 30
sample k

Closed loop response for initial condition:  z¢ = (0.5, —0.5)
no disturbance: w =10

40

50



Integral action — example

+ integrator | |
— — no integrator

sample k

Closed loop response for initial condition:  z¢ = (0.5, —0.5)
constant disturbance: w = 0.75



Constrained MPC

Naive constrained MPC strategy: w = 0 assumed in predictions
N—-1
minlilinize z% (”Zi\kHéz + sl ) + lznel®
i—
subject to  u <wuyp <u, i =0,...,N+ N,
&sz\k Sfu Z:177N+Nc

with: P and N, determined for mode 2 control law w;);, = K,z

and initial prediction state: 201k = L}k} where vi 11 = v + Yk
k



Constrained MPC

Naive constrained MPC strategy: w = 0 assumed in predictions
N—-1
minlilinize z% (”Zi\kHEQZ + sl ) + lznel®
i—
subject to  u <wuyp <u, i =0,...,N+ N,
&sz\k Sfu Z:177N+Nc

with: P and N, determined for mode 2 control law w;);, = K,z

and initial prediction state: 201k = L}k} where vi 11 = v + Yk
k

* If closed loop system is stable

then wup - u®® = v —2v¥ = gy —0

* but disturbance wy is ignored in predictions, so

{ I (Zhg1) — I (2k) £ 0
feasibility at time k % feasibility at &+ 1

therefore no guarantee of stability



Constrained MPC — example

T T T T
1 S SO, _
05 — — no integrator| |
s O ]
-0.5 s s T - - -4
S e 4
-1.5

V 10 20 30 40 50

constraints
violated

Closed loop response with initial condition: 2o = (0.5, —0.5)
constraints: —1 <wu <1 disturbance: w = 0.75



Robust constraints

o ) . for all prediction times ¢ = 0,1, ...
If predictions satisfy constraints .
for all disturbances w; € W

then feasibility of constraints at time k ensures feasibility at time k + 1

> Decompose predictions into

nominal predicted state Silk
uncertain predicted state e,
where
Sit1)k = Psjjx + Beyjp Solk = Tk

Ti|k = Si|k T €|k {
eir1)k = Peyp + Dwyg eoix = 0

D> Pre-stabilized predictions:
uir = K, + ¢ and ® = A+ BK

where K = K q is the unconstrained LQ optimal gain



Pre-stabilized predictions — example

Scalar system:  xp11 = 22k + ug + Wi, constraint: x| < 2
i—1

uncertainty: Cilk = Z 2w = (28 — 1)w, disturbance: wy =w
7=0 |’LU| < 1



Pre-stabilized predictions — example

Scalar system:  xp41 = 2xp, + up + wy, constraint: x| < 2
i—1

uncertainty: Cilk = Z 2w = (28 — 1)w, disturbance: wy =w
7=0 |’LU| < 1

10

Robust constraints: 8l
upper bound on e;

|55 + €l <2 forall Jw| <1

|15 < 2 — maxy|<1e;k] 0
]
U j
|sue] <2 —(2° = 1) .l
lower bound on e;;,
.8,
U
-10 " . . .
infeasible for all 7 > 1 0 1 2 3 4 5

sample



Pre-stabilized predictions — example

Avoid infeasibility by using pre-stabilized predictions:

free
U = Kx“k =+ Cijk; K=-1.9, Cilk = {0
i—1
stable predictions: e;;, = ZO.le =(1-0.19w/0.9, |w|<1

Jj=0

i=0,...

i >N



Pre-stabilized predictions — example

Avoid infeasibility by using pre-stabilized predictions:

free +=0,...,N—1
U = Kl‘“k =+ Cijk; K=-1.9, Cilk = {

0 i >N
i1
stable predictions: e;;, = ZO.le =(1-0.19w/0.9, |w|<1
§=0
5
il bound
Robust constraints: 5| UPPer bound.on €k |
|3i\k + €i|k| <2 for all |’U)‘ <1 L e £ ****************

I =
0
|sije] < 2 — max|, <1 ek A1

U 2= T» 7777777777777777

|5i\k| <2- (1 - 0~1i)/0~9 _4: lower bound on e

>0 for all 7

0 1 2 3 4 5
sample



Pre-stabilized predictions

> Feedback structure of MPC with open loop predictions:

MPC
OPTIMIZATION

&

-

PLANT

> Feedback structure of MPC with pre-stabilized predictions:

OPTIMIZATION

MPC

w

PLANT

STABLIZING
FEEDBACK




General form of robust constraints

How can we impose (general linear) constraints robustly?

* Pre-stabilized predictions:
Sit1)k = Psijx + Beyjp Solk = Tk
Ti|k = Si|k T €ilk .. — Pe. Duw. —0
itk = Peqp + Dwjk eolk =

= €k = Dw;_1 +PDw;_o+---+ ‘I’ilewo

* General linear constraints: Fa;;, + Gugj, < 1

are equivalent to tightened constraints on nominal predictions:

F+GK)s; + Gey <1 —h;
| |

where  hg =0
h; = max  (F+GK)ej, i=1,2,...
wo,.--,Wi—1€

(i.e. hi =h;_1+ maxweW(F + GK)U}
requiring one LP for each row of h;)



Tube interpretation

The uncertainty in predictions: e; ;1 = ®e;p, + Dw;, w; € W

evolves inside a tube (a sequence of sets): e;;, € Ej|, where
Ejy =DWa&®DW e - @@ 'DW, i=12,...

Hence we can define:

* a state tube ;) = s + € € Xy

Xije = {sij} © By, 1=0,1,...
* a control input tube u;, = Ky, + ¢ = K s + i + Kegr € Uy,
Ui = {Ksij + cipi} © KBy, i =0,1,...

and impose constraints robustly for the state and input tubes

(where @ is Minkowski set addition)



Tube interpretation

The uncertainty in predictions: e; ;1 = ®e;p, + Dw;, w; € W

evolves inside a tube (a sequence of sets): e;;, € Ej|, where

Ejy =DWa&®DW e - @@ 'DW, i=12,...

> sample
Xijk = {sijx} © Eq



Robust MPC

Prototype robust MPC algorithm
Offline: compute N, and hq,...,hy,. Onlineat k =0,1,...
(i). solve cj =argmin J(xg,ck)

Ck

S.t. (F+GK)Sl|k+GCZ‘k <1—h;y 1=0,...,N+ N,

ii). apply uxy = Kxy + ¢, to the system
0|k

* tightened linear constraints are applied to nominal predictions

* N, is the constraint-checking horizon defined by:

(F 4+ GE)®Net1s <1 — hy 41

for all s satisfying (F + GK)®'s <1—h;, i=0,...

* the online optimization is robustly recursively feasible

, Ne




Robust MPC

Prototype robust MPC algorithm
Offline: compute N, and hq,...,hy,. Onlineat k =0,1,...
(i). solve cj =argmin J(xg,ck)

Ck

S.t. (F—|—GK)Sl|k+GCZ‘k <1—h;y 1=0,...,N+ N,

ii). apply uxy = Kxy + ¢, to the system
0|k

nominal cost, evaluated assuming w; = 0 for all i:
o0
T(@ryer) =Y (lsarlld + 1K sqr + carllr) = llzellp + llex iy,
i=0
(one possible choice)



Convergence of robust MPC with nominal cost
If wyp = Ky + c4x for K = K q, then:

* the unconstrained solution is ¢, = 0, so the nominal cost is

I (@rs ) = laellp + llexllfy,

and W, is block-diagonal: W, = diag{P., ...

* recursive feasibility = Cx11 = (ci*lk, e ,c*N_llk, 0) feasible at k& + 1

* hence lci s (I, < llekllfy, — llcgl7.
oo
= D lleopls, < lletliv, < oo

k=0
= hmk—>oo Colk = 0

* therefore wuy — Kxp as k — 00

xp — the (minimal) robustly invariant set
under unconstrained LQ optimal feedback

, P}



Robust MPC with constant disturbance

Assume wj, = w = constant for all k
combine: pre-stabilized predictions
augmented state space model
* Predicted state and input sequences:
i = [I 0] (sijk + eqe)
Ui = K (Sijk + €pk) + Cije

* Prediction model:

_ B A0 B
nominal  sjpqk = Pspp + [0] i = [C I} * [O] K-

1—1
. | D T
uncertain €ilk = E ®J [0] w Solk = L):] y €0k = 0
Jj=0

* Nominal cost:
oo

J(k, vk, ) = Z(H«%\k”éz + | K850 + Ci\k”%)
i=0



Robust MPC with constant disturbance

Assume wj, = w = constant for all k

combine: pre-stabilized predictions
augmented state space model

* robust state constraints:

<y <T

* robust input constraints:

U< W S U

T4+ h <spp ST — Ny

i1
hi:gleav}\{)[j O}jz::()@] [O}w

u+hi < K.sy+ e <u—hj
i1

i | D
/.: J
=g . 3 [ w
]:

* N and h;, b} for i =1,..., N, can be computed offline



Robust MPC with constant disturbance — example

+integrator ||
— — no integrator

40 50

1 ; ; : :

0

-1

-2

>

-3

-4

-5

-6 L L L L

0 10 20 30 40 50
sample k

Closed loop response with initial condition: 2o = (0.5, —0.5)
constraints: —1 <4 <1 disturbance: w = 0.75



Summary

>> Integral action: augment model with integrated output error
include integrated output error in cost

then
(i). closed loop system is stable if w =0

(ii). steady state error must be zero if response is stable for w # 0

> Robust MPC: use pre-stabilized predictions
apply constraints for all possible future uncertainty

then
(i). constraint feasibility is guaranteed at all times if initially feasible

(ii). closed loop system inherits the stability and convergence properties
of unconstrained LQ optimal control (assuming nominal cost)



Overview of the course

@ Introduction and Motivation

Basic MPC strategy; prediction models; input and state constraints; constraint handling:
saturation, anti-windup, predictive control

Prediction and optimization

Input/state prediction equations; unconstrained optimization. Infinite horizon cost; dual mode
predictions. Incorporating constraints; quadratic programming.

Closed loop properties

Lyapunov analysis based on predicted cost. Recursive feasibility; terminal constraints; the
constraint checking horizon. Constrained LQ-optimal control.

Robustness to disturbances

Setpoint tracking; MPC with integral action. Robustness to constant disturbances:
prestabilized predictions and robust feasibility. Handling time-varying disturbances.



