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Organisation

B 4 lectures – LR2, weeks 3 & 4

Monday at 15.00 & Friday at 12.00

recordings available on Canvas

B Examples class – LR3, week 5

Friday at 14:00, 16:00 or 17:00

sign up on Canvas
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Course outline

1. Introduction to predictive control

2. Prediction and optimization

3. Closed loop properties

4. Disturbances and integral action

5. Robust tube MPC
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Books

B J.M. Maciejowski, Predictive control with constraints. Prentice Hall, 2002

Recommended reading: Chapters 1–3, 6 & 8

B J.B. Rawlings and D.Q. Mayne, Model Predictive Control: Theory and Design. Nob Hill
Publishing, 2009

B B. Kouvaritakis and M. Cannon, Model Predictive Control: Classical, Robust and Stochastic,
Springer 2015

Recommended reading: Chapters 1, 2 & 3
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Motivating example: switching control

How does a thermostat regulate room temperature?

���������� PUFEQGX�VHP

KWWSV���XQLR[IRUGQH[XV�P\�VKDUHSRLQW�FRP�SHUVRQDO�HQJV����BR[BDFBXN�BOD\RXWV����'RF�DVS["VRXUFHGRF ^�F���F���H��I������D�����H����EFGI��`	DFWLRQ« ���

�
tĞĚŶĞƐĚĂǇ͕�Ϯϵ��Ɖƌŝů�ϮϬϮϬ� ϭϰ͗ϬϬ�

Closed loop control system:

���������� PUFEQGX�VHP

KWWSV���XQLR[IRUGQH[XV�P\�VKDUHSRLQW�FRP�SHUVRQDO�HQJV����BR[BDFBXN�BOD\RXWV����'RF�DVS["VRXUFHGRF ^�F���F���H��I������D�����H����EFGI��`	DFWLRQ« ���

dŚĞƌŵŽ�ĚŝĂŐƌĂŵƐ�
tĞĚŶĞƐĚĂǇ͕�Ϯϵ��Ɖƌŝů�ϮϬϮϬ� ϭϰ͗ϬϬ�
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Motivating example: switching control

���������� PUFEQGX�VHP

KWWSV���XQLR[IRUGQH[XV�P\�VKDUHSRLQW�FRP�SHUVRQDO�HQJV����BR[BDFBXN�BOD\RXWV����'RF�DVS["VRXUFHGRF ^�F���F���H��I������D�����H����EFGI��`	DFWLRQ« ���

dŚĞƌŵŽ�ĚŝĂŐƌĂŵƐ�
tĞĚŶĞƐĚĂǇ͕�Ϯϵ��Ɖƌŝů�ϮϬϮϬ� ϭϰ͗ϬϬ�

System model:

C
dT

dt
= q − qL

qL = βT

q = αu

u =

{
U if on

0 if off

Switching controller:

���������� PUFEQGX�VHP

KWWSV���XQLR[IRUGQH[XV�P\�VKDUHSRLQW�FRP�SHUVRQDO�HQJV����BR[BDFBXN�BOD\RXWV����'RF�DVS["VRXUFHGRF ^�F���F���H��I������D�����H����EFGI��`	DFWLRQ« ���

dŚĞƌŵŽ�ƐǁŝƚĐŚŝŶŐ�ƉůŽƚƐ�
tĞĚŶĞƐĚĂǇ͕�Ϯϵ��Ɖƌŝů�ϮϬϮϬ� ϭϱ͗ϯϰ�

? Single controller parameter: hysteresis band δ

? Accurate models aren’t needed to regulate T to [T 0 − δ, T 0 + δ]
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Motivating example: switching control

���������� PUFEQGX�VHP
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dŚĞƌŵŽ�ĚŝĂŐƌĂŵƐ�
tĞĚŶĞƐĚĂǇ͕�Ϯϵ��Ɖƌŝů�ϮϬϮϬ� ϭϰ͗ϬϬ�

System model:

C
dT

dt
= q − qL

qL = βT

q = αu

u =

{
U if on

0 if off

Closed loop response:

T (t) = Tss + (T (0)− Tss)e−t/τ

Tss =

{
αU/β if on

0 if off

τ =
C

β

? Single controller parameter: hysteresis band δ

? Accurate models aren’t needed to regulate T to [T 0 − δ, T 0 + δ]
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Motivating example: switching control
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? Single controller parameter: hysteresis band δ

? Accurate models aren’t needed to regulate T to [T 0 − δ, T 0 + δ]
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Motivating example: proportional control (P)

���������� PUFEQGX�VHP

KWWSV���XQLR[IRUGQH[XV�P\�VKDUHSRLQW�FRP�SHUVRQDO�HQJV����BR[BDFBXN�BOD\RXWV����'RF�DVS["VRXUFHGRF ^�F���F���H��I������D�����H����EFGI��`	DFWLRQ« ���

dŚĞƌŵŽ�ĚŝĂŐƌĂŵƐ�
tĞĚŶĞƐĚĂǇ͕�Ϯϵ��Ɖƌŝů�ϮϬϮϬ� ϭϰ͗ϬϬ�

System model:

C
dT

dt
= q − qL

qL = βT

q = αu

u = K(T 0 − T )

Closed loop response:

T (t) = Tss + (T (0)− Tss)e−t/τ

Tss =
αK

αK + β
T 0

τ =
C

αK + β

? Controller parameter: gain K

? Tss → T 0 and τ → 0 as K →∞ independent of parameters C, α, β
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Motivating example: proportional control (P)

Controller: u = K(T 0 − T )

Effect of increasing gain (ideal case), K1 < K2 < K3:

���������� PUFEQGX�VHP

KWWSV���XQLR[IRUGQH[XV�P\�VKDUHSRLQW�FRP�SHUVRQDO�HQJV����BR[BDFBXN�BOD\RXWV����'RF�DVS["VRXUFHGRF ^�F���F���H��I������D�����H����EFGI��`	DFWLRQ« ���

WƌŽƉŽƌƚŝŽŶĂů�ƉůŽƚƐ�
tĞĚŶĞƐĚĂǇ͕�Ϯϵ��Ɖƌŝů�ϮϬϮϬ� ϭϳ͗ϯϭ�

High gain K is often de-stabilizing because of:

? nonlinearity, e.g. actuator saturation: u = min
{
ū,max

{
K(T 0 − T ), 0

}}
? additional dynamics, e.g. sensor and actuator time-delay or lag
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Motivating example: proportional control (P)

Controller: u = K(T 0 − T )

Actual effect of increasing gain:

���������� PUFEQGX�VHP
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High gain K is often de-stabilizing because of:

? nonlinearity, e.g. actuator saturation: u = min
{
ū,max
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? additional dynamics, e.g. sensor and actuator time-delay or lag
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Motivating example: proportional + integral control (PI)

Control signal proportional to tracking error and integral of tracking error:

u = K(T 0 − T ) +
K

Ti

∫ t

(T 0 − T ) dt

���������� PUFEQGX�VHP

KWWSV���XQLR[IRUGQH[XV�P\�VKDUHSRLQW�FRP�SHUVRQDO�HQJV����BR[BDFBXN�BOD\RXWV����'RF�DVS["VRXUFHGRF ^�F���F���H��I������D�����H����EFGI��`	DFWLRQ« ���

dŚĞƌŵŽ�ĚŝĂŐƌĂŵƐ�
tĞĚŶĞƐĚĂǇ͕�Ϯϵ��Ɖƌŝů�ϮϬϮϬ� ϭϰ͗ϬϬ�

? If closed loop system is stable
then T 0 − T (t)→ 0 as t→∞, i.e. no steady state error

(assuming T 0 = constant)

? Controller has no knowledge of model parameters
but increasing gain (K/Ti) generally degrades transient performance

(overshoot and oscillations)

? Two controller parameters K, Ti to be tuned/optimized
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Motivating example: PID control

Include the rate of change of tracking error:

u = K(T 0 − T ) +
K

Ti

∫ t

(T 0 − T ) dt+KTd
d

dt
(T 0 − T )

���������� PUFEQGX�VHP

KWWSV���XQLR[IRUGQH[XV�P\�VKDUHSRLQW�FRP�SHUVRQDO�HQJV����BR[BDFBXN�BOD\RXWV����'RF�DVS["VRXUFHGRF ^�F���F���H��I������D�����H����EFGI��`	DFWLRQ« ���

dŚĞƌŵŽ�ĚŝĂŐƌĂŵƐ�
tĞĚŶĞƐĚĂǇ͕�Ϯϵ��Ɖƌŝů�ϮϬϮϬ� ϭϰ͗ϬϬ�

? The derivative term provides anticipation of future error (“feedforward”)

? Three PID gains K,Ti, Td need tuning, either using a system model or heuristic rules
(e.g. Ziegler-Nichols)

? PID tuning is difficult with nonlinear dynamics and constraints

? Not obvious how to configure feedback loops for MIMO problems
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Controller optimization

Can we optimize controller parameters for a given performance criterion?

e.g. mean square error: min
K,Ti,Td

∫ ∞
0

E{(T 0 − T )2 + ρu2} dt

���������� PUFEQGX�VHP

KWWSV���XQLR[IRUGQH[XV�P\�VKDUHSRLQW�FRP�SHUVRQDO�HQJV����BR[BDFBXN�BOD\RXWV����'RF�DVS["VRXUFHGRF ^�F���F���H��I������D�����H����EFGI��`	DFWLRQ« ���

dŚĞƌŵŽ�ĚŝĂŐƌĂŵƐ�
tĞĚŶĞƐĚĂǇ͕�Ϯϵ��Ɖƌŝů�ϮϬϮϬ� ϭϰ͗ϬϬ�

? Optimization of linear controller gains (e.g. K,Ti, Td) is generally nonconvex

? It’s more common to optimize over control signals (e.g. LQG control)

min
u

∫ ∞
0

E{(T 0 − T )2 + ρ u2} dt

Unconstrained linear system =⇒ solution is linear state feedback
but no closed-form solution in almost all other cases
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Model predictive control

MPC optimizes predicted performance numerically over future control and state trajectories

���������� PUFEQGX�VHP

KWWSV���XQLR[IRUGQH[XV�P\�VKDUHSRLQW�FRP�SHUVRQDO�HQJV����BR[BDFBXN�BOD\RXWV����'RF�DVS["VRXUFHGRF ^�F���F���H��I������D�����H����EFGI��`	DFWLRQ« ���

dŚĞƌŵŽ�ĚŝĂŐƌĂŵƐ�
tĞĚŶĞƐĚĂǇ͕�Ϯϵ��Ɖƌŝů�ϮϬϮϬ� ϭϰ͗ϬϬ�

? The optimization is generally easier than optimizing feedback gains
(e.g. convex for linear systems with linear state and input constraints)

? Single-shot solution is an open loop control signal
MPC updates it by repeating the optimization periodically online

? This results in a feedback controller,
providing robustness to model and measurement uncertainty
and compensating for using finite numbers of optimization variables
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Model predictive control

1 Prediction using a dynamic model & constraints

2 Online optimization

3 Receding horizon implementation

1. Prediction

? Plant model: xk+1 = f(xk, uk)

? Simulate forward in time (over a prediction horizon of N steps)

predicted
input
sequence

uk =


u0|k
u1|k

...
uN−1|k


predicted
state
sequence

xk =


x0|k
x1|k

...
xN |k


Notation: (ui|k, xi|k) = predicted i steps ahead | evaluated at time k

x0|k = xk
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Overview of MPC

2. Optimization

? Performance cost: J(xk,uk) =

N∑
i=0

`i(xi|k, ui|k)

`i(x, u): stage cost

? Optimize numerically to determine the optimal input sequence:

u∗k = arg min
uk

J(xk,uk)

=
(
u∗0|k(xk), . . . , u∗N−1|k(xk)

)
3. Implementation

? Use first element of u∗k =⇒ MPC law: uk = u∗0|k(xk)

? Repeat optimization at each sampling instant k = 0, 1, . . .
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Overview of MPC

time 

prediction horizon 

time past predicted 

u

x

k k +N
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Overview of MPC

time 

prediction horizon at time  

prediction horizon at time  

time 

u

x

k

k + 1

k k +Nk + 1 k +N + 1
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Example

Plant model: xk+1 =

[
1.1 2
0 0.95

]
xk +

[
0

0.0787

]
uk

yk =
[
−1 1

]
xk

Cost:
N−1∑
i=0

(y2i|k + u2i|k) + y2N |k

Prediction horizon: N = 3

Predicted input and state sequences: uk =

u0|ku1|k
u2|k

, xk =


x0|k
x1|k
x2|k
x3|k


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Example
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Example
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Model predictive control

Advantages

B Flexible plant model

– multivariable
– linear or nonlinear
– deterministic, stochastic or fuzzy

B Handles constraints on control inputs and states

– actuator limits
– safety, environmental and economic constraints

B Approximately optimal control

Disadvantages

B Requires online optimization

– quadratic programming (QP) problem for linear-quadratic problems
– high computational requirement for nonlinear systems
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MPC development

Control strategy reinvented several times

LQG optimal control 1950’s
industrial process control 1980’s
constrained nonlinear MPC 1990’s
robust MPC 2000’s
stochastic MPC 2010’s

Current research challenges:

– high sample rates, long prediction horizons, uncertain & nonlinear models

– embedded optimization & sparse solvers

– adaptive and stochastic MPC
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Prediction model

Linear plant model: xk+1 = Axk +Buk

B Predicted xk depends linearly on uk [details in Lecture 2]

B Therefore LQ cost is quadratic in uk u>k Huk + 2f>uk + g(xk)

and constraints are linear Acuk ≤ b(xk)

B Online optimization:

min
u

u>Hu + 2f>u s.t. Acu ≤ bc

This is a convex Quadratic Program (QP),

which is reliably and efficiently solvable
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Prediction model

Nonlinear plant model: xk+1 = f(xk, uk)

B Predicted xk depends nonlinearly on uk

B In general the cost is nonconvex in uk: J(xk,uk)

and the constraints are nonconvex: gc(xk,uk) ≤ 0

B Online optimization:

min
u

J(xk,u) s.t. gc(xk,u) ≤ 0

– may be nonconvex

– may have local minima

– may not be solvable efficiently or reliably
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Prediction model

Discrete time prediction model

B Predictions optimized periodically at t = 0, T, 2T, . . .

B Usually T = Ts = sampling interval of model

B But T = nTs for any integer n ≥ 1 is possible, (e.g. if Ts < time needed

for online optimization)
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Prediction model

Continuous time prediction model

B Predicted u(t) need not be piecewise constant,

e.g. continuous, piecewise linear u(t)

or u(t) = polynomial in t (piecewise quadratic, cubic etc)

B Continuous time prediction models can be solved online

B This course: discrete-time model and T = Ts assumed
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Constraints

Classify state and input constraints as either hard or soft

B Hard constraints must be satisfied at all times,
if this is not possible, then the problem is infeasible

B Soft constraints can be violated to avoid infeasibility

B Strategies for handling soft constraints:

? impose (hard) constraints on the probability of violating each soft constraint

? or remove active constraints until the problem becomes feasible
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Constraints

Typical methods for handling input constraints:

(a) Saturate the unconstrained control law

(ignore constraints in controller design)

(b) De-tune the unconstrained control law

by increasing the penalty on u in the performance objective

(c) Use an anti-windup strategy to limit the state of a dynamic controller

(typically the integral term of a PI or PID controller)

(d) Use MPC with inequality-constrained optimization
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Example: input constraints

(a) Effects of controller saturation, u ≤ uk ≤ u

unconstrained LQ optimal control: u0(x) = Klqx

saturated: u = max
{

min{u0, u}, u
}

Input constraints:

u ≤ u ≤ u
u = −1, u = 1

Controller saturation causes

? poor performance

? possible instability

0 5 10 15 20 25 30 35 40
−2

0

2

4

6

8

u

0 5 10 15 20 25 30 35 40
−4

−2

0

2

4

6

y

sample

saturated lqr
unconstrained lqr
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Example: input constraints

(b) Effects of de-tuning the unconstrained optimal control law:

Klq = optimal gain for LQ cost
∞∑
k=0

(
y2k + ρ u2k

)
Increase ρ until u = Klqx satisfies constraints (locally)

Example
ρ increased from 10−2 to 103

settling time increased from 6 to 40

? yk → 0 slowly

? stability ensured
(but here the response is
slower than saturated LQR)

0 10 20 30 40 50 60
−2

0

2

4

6
y

sample

0 10 20 30 40 50 60
−2

0

2

4

6

8

u

lqr, R=1000
lqr, R=0.01
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Example: input constraints

(c) Effects of Anti-windup:

Anti-windup attempts to avoid instability while control input saturated

Many possible approaches, e.g. anti-windup PI controller:

u = max
{

min{(Ke+ v), u}, u
}

Tiv̇ + v = u

⇓

u ≤ u ≤ u =⇒ u = K
(
e+

1

Ti

∫ t

e dt
)

u = u or u =⇒ v(t)→ u or u exponentially

Heuristic strategy may not prevent instability
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Example: input constraints

(d) Comparison with MPC (with prediction horizon N = 16)

Example

MPC vs saturated LQ
(both using the same cost):

? settling time reduced to 20

? stability is guaranteed

0 5 10 15 20 25 30 35 40
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Summary

B Predict performance using plant model

e.g. linear or nonlinear, discrete or continuous time

B Optimize future (open loop) control sequence

computationally much easier than optimizing over feedback laws

B Implement first sample, then repeat optimization

provides feedback to reduce effect of uncertainty

B Comparison of common methods of handling constraints:

saturation, de-tuning, anti-windup, MPC
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Lecture 2

Prediction and optimization
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Prediction and optimization

Input and state predictions

Unconstrained finite horizon optimal control

Infinite prediction horizons and connection with LQ optimal control

Incorporating constraints

Quadratic programming
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Review of MPC strategy

At each sampling instant:

1 Use a model to predict system behaviour over a finite future horizon

2 Compute a control sequence by solving an online optimization problem

3 Apply the first element of optimal control sequence as control input

Advantages

? flexible plant model

? constraints taken into account

? optimal performance

Disadvantage

? online otimization required
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Prediction equations

Linear time-invariant model: xk+1 = Axk +Buk

assume xk is measured at time k

Predictions: uk =

 u0|k
...

uN−1|k

, xk =

x0|k...
xN |k



Quadratic cost: J(xk,uk) =

N−1∑
i=0

(
‖xi|k‖2Q + ‖ui|k‖2R

)
+ ‖xN |k‖2P

(‖x‖2Q = x>Qx, ‖u‖2R = u>Ru

P = terminal weighting matrix )
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Prediction equations

Linear time-invariant model: xi+1|k = Axi|k +Bui|k

assume xk is measured at time k

x0|k = xk

x1|k = Axk +Bu0|k

...

xN |k = ANxk +AN−1Bu0|k +AN−2Bu1|k + · · ·+BuN−1|k

⇓

xk =Mxk + Cuk,

M =


I
A
A2

...
AN

 , C =


0 0 · · · 0
B
AB B

...
...

. . .

AN−1B AN−2B · · · B


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Prediction equations

Predicted cost:

Jk =

N−1∑
i=0

(
‖xi|k‖2Q + ‖ui|k‖2R

)
+ ‖xN |k‖2P

= x>kQxk + u>kRuk

{
Q = diag{Q, . . . , Q, P}
R = diag{R, . . . , R,R}

⇓

Jk = u>k Huk + 2x>k F
>uk + x>k Gxk

where
H = C>Q C + R ← u× u terms

F = C>QM ← u× x terms

G =M>QM ← x× x terms

time-invariant model =⇒ H, F , G can be computed offline
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Prediction equations – example

Plant model: xk+1 = Axk +Buk, yk = Cxk

A =

[
1.1 2
0 0.95

]
, B =

[
0

0.079

]
, C =

[
−1 1

]

Prediction horizon N = 4: C =



0 0 0 0
0 0 0 0
0 0 0 0

0.079 0 0 0
0.157 0 0 0
0.075 0.079 0 0
0.323 0.157 0 0
0.071 0.075 0.079 0
0.497 0.323 0.157 0
0.068 0.071 0.075 0.079


Cost matrices Q = C>C, R = 0.01, and P = Q:

H =

0.271 0.122 0.016 −0.034
? 0.086 0.014 −0.020
? ? 0.023 −0.007
? ? ? 0.016

 F =

 0.977 4.925
0.383 2.174
0.016 0.219
−0.115 −0.618


G =

[
7.589 22.78
? 103.7

]
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Prediction equations: LTV model

Linear time-varying model: xk+1 = Akxk +Bkuk

assume xk is measured at time k

Predictions: x0|k = xk

x1|k = Akxk +Bku0|k

x2|k = Ak+1Akxk +Ak+1Bku0|k +Bk+1u1|k

...

xi|k =

0∏
j=i−1

Ak+jxk + Ci(k)uk, i = 0, . . . , N

Ci(k) =

[
1∏

j=i−1
Ak+jBk

2∏
j=i−1

Ak+jBk+1 · · · Bk+i−1 0 · · · 0

]

?
∏0
j=i−1Ak+j = Ak+i−1 · · ·Ak for i ≥ 1 and

∏0
j=i−1Ak+j = 0 for i = 0

? H(k), F (k), G(k) depend on k and must be computed online
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Unconstrained optimization

Minimize cost: u∗ = arg min
u
J, J = u>Hu + 2x>F>u + x>Gx

differentiate w.r.t. u: ∇uJ = 2Hu + 2Fx = 0

⇓
u = −H−1Fx

= u∗ if H is positive definite i.e. if H � 0

Here H = C>Q C + R � 0 if:

{
R � 0 & Q,P � 0 or

R � 0 & Q,P � 0 & C is full-rank
m

(A,B) controllable

Receding horizon controller is linear state feedback:

uk = −
[
I 0 · · · 0

]
H−1Fxk

is the closed loop response optimal? is it even stable?
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Example

Model: A,B,C as before, cost: Jk =

N−1∑
i=0

(
y2i|k + 0.01u2i|k

)
+ y2N |k

I For N = 4: u∗k = −H−1Fxk =

−4.36 −18.7
1.64 1.24
1.41 3.00
0.59 1.83

xk
uk =

[
−4.36 −18.7

]
xk

I For general N : uk = L(N)xk

N = 4 N = 3 N = 2 N = 1

L(N)
[
−4.36 −18.69

] [
−3.80 −16.98

] [
1.22 −3.95

] [
5.35 5.10

]
λ
(
A+BL(N)

)
0.29± 0.17j 0.36± 0.22j 1.36, 0.38 2.15, 0.30

stable stable unstable unstable
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Example

Horizon: N = 4, x0 = (0.5,−0.5)
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Example

Horizon: N = 3, x0 = (0.5,−0.5)
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Example

Horizon: N = 2, x0 = (0.5,−0.5)
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Example

Horizon: N = 2, x0 = (0.5,−0.5)

0 2 4 6 8 10
−80

−60

−40

−20

0

20

u

0 2 4 6 8 10
−5

0
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10

15

sample, k

y

closed−loop
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Observation: big differences exist between predicted and closed loop responses for small N
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Receding horizon control

Why is this example unstable for N ≤ 2?

System is non-minimum phase

⇓

impulse response changes sign

⇓

therefore short horizon causes instability

N < 3

C21 Model Predictive Control 2 - 12 

Unconstrained optimization: example 

•   Unstable for  

short horizon closed-loop  
instability  

impulse response changes sign 

non-minimum phase 

System is 

•   Solution: 

use infinite cost horizon 

but retain finite          number of d.o.f. in predictions N =

Solution:

? use an infinite horizon cost

? but keep a finite number of optimization variables in predictions
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Dual mode predictions

An infinite prediction horizon is possible with dual mode predictions:

ui|k =

{
optimization variables i = 0, . . . , N − 1, mode 1

Kxi|k i = N,N + 1, . . . mode 2

mode 1

optimized explicitly

mode 2

feedback law: u = Kx

Feedback gain K: stabilizing and determined offline

e.g. unconstrained LQ optimal for
∑∞
i=0(‖xi‖2Q + ‖ui‖2R)
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Infinite horizon cost

If the predicted input sequence is

{u0|k, . . . , uN−1|k,KxN |k,KΦxN |k, . . .}

then
∞∑
i=0

(
‖xi|k‖2Q + ‖ui|k‖2R) =

N−1∑
i=0

(
‖xi|k‖2Q + ‖ui|k‖2R) + ‖xN |k‖2P

where

P − (A+BK)>P (A+BK) = Q+K>RK

Lyapunov matrix equation (discrete time)

? If Q+K>RK � 0, then the solution P is unique and P � 0

? Matlab: P = dlyap(Phi’,RHS);

Phi = A+B*K; RHS = Q+K’*R*K;

? P is equal to the steady state Riccati equation solution if K is LQ optimal
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Infinite horizon cost

Proof that the predicted cost over the mode 2 horizon is ‖xN |k‖2P :

Let J∞(x) =

∞∑
i=0

(
‖xi‖2Q + ‖ui‖2R

)
, with ui = Kxi, xi+1 = Φxi ∀i

x0 = x

– then J∞(x) =

∞∑
i=0

(
x>Φi

>
QΦix+ x>K>Φi

>
RKΦix

)
= x>

[ ∞∑
i=0

(Φi)>(Q+K>RK)Φi︸ ︷︷ ︸
=P

]
x = ‖x‖2P

– but Φ>PΦ =

∞∑
i=1

(Φi)>(Q+K>RK)Φi

= P − (Q+K>RK)

so P − Φ>PΦ = Q+K>RK
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Connection with LQ optimal control

Let J(xk,uk) =

N−1∑
i=0

(
‖xi|k‖2Q + ‖ui|k‖2R

)
+ ‖xN |k‖2P

P − (A+BK)>P (A+BK) = Q+K>RK, K = LQ optimal

Then the solution of the unconstrained optimization satisfies

u∗0|k = Kxk where u∗k = arg min
u
J(xk,u) = (u∗0|k, . . . , u

∗
N−1|k)

since

{u0|k, u1,k, . . .} is optimal iff

{
uk = {u0|k, . . . , uN−1|k} is optimal

and {uN |k, uN+1|k, . . .} is optimal
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Connection with LQ optimal control – example

I Model parameters (A,B,C) as before
LQ optimal gain for Q = C>C, R = 0.01: K =

[
−4.36 −18.74

]
Lyapunov equation solution: P =

[
3.92 4.83

13.86

]

I Cost matrices for N = 4:

H =


1.44 0.98 0.59 0.26
? 0.72 0.44 0.20
? ? 0.30 0.14
? ? ? 0.096

 F =


3.67 23.9
2.37 16.2
1.36 9.50
0.556 4.18

 G =

[
13.8 66.7
? 413

]

I Predictive control law: uk = −
[
1 0 0 0

]
H−1Fxk

=
[
−4.35 −18.74

]
xk
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Connection with LQ optimal control – example

I Response for N = 4, x0 = (0.5,−0.5)

0 2 4 6 8 10
u

-2

0

2

4

6

8

sample, k
0 2 4 6 8 10

y

-1

-0.5

0

0.5 closed loop
predicted

Infinite horizon cost
no constraints

}
=⇒ identical predicted and closed loop responses
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Dual mode predictions

Pre-stabilize predictions to provide better numerical stability:

B Control inputs

mode 1 ui|k = Kxi|k + ci|k, i = 0, 1, . . . , N − 1

mode 2 ui|k = Kxi|k, i = N,N + 1, . . .

B States
mode 1 xi+1|k = Φxi|k +Bci|k, i = 0, 1, . . . , N − 1

mode 2 xi+1|k = Φxi|k, i = N,N + 1, . . .

where (c0|k, . . . , cN−1|k) are optimization variables
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Dual mode predictions

Pre-stabilize predictions to provide better numerical stability:

B Vectorized form: xk =Mxk + Cck

xk :=

x0|k...
xN |k

 , ck :=

 c0|k
...

cN−1|k



M =


I
Φ
Φ2

...
ΦN

 , C =


0 0 · · · 0
B

ΦB B
...

...
. . .

ΦN−1B ΦN−2B · · · B


B Cost: J

(
xk, (u0|k, . . . , uN−1|k)

)
= J (xk, ck)
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Input and state constraints

Infinite horizon unconstrained MPC = LQ optimal control

but MPC can also handle constraints

Consider constraints applied to mode 1 predictions:

? input constraints: u ≤ ui|k ≤ u, i = 0, . . . , N − 1

⇐⇒
[
I
−I

]
uk ≤

[
u
−u

]
where

u =
[
u> · · · u>

]>
u =

[
u> · · · u>

]>
? state constraints: x ≤ xi|k ≤ x, i = 1, . . . , N

⇐⇒
[
Ci
−Ci

]
uk ≤

[
x
−x

]
+

[
−Ai
Ai

]
xk, i = 1, . . . , N
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Input and state constraints

Constraints on mode 1 predictions can be expressed

Acuk ≤ bc +Bcxk

where Ac, Bc, bc can be computed offline since model is time-invariant

The online optimization is a quadratic program (QP):

minimize
u

u>Hu + 2x>k F
>u

subject to Acu ≤ bc +Bcxk

which is a convex optimization problem with a unique solution if

H = C>QC + R is positive definite

2 - 20



QP solvers: (a) Active set

Consider the QP: u∗ = arg min
u

u>Hu + 2f>u

subject to Au ≤ b

and let (Ai, bi) = ith row/element of (A, b)

B Individual constraints are active or inactive

active inactive
Aiu

∗ = bi, ∀i ∈ I Aiu
∗ ≤ bi, ∀i 6∈ I

bi affects solution bi does not affect solution

B Equality constraint problem: u∗ = arg min
u

u>Hu + 2f>u

subject to Aiu = bi, ∀i ∈ I

B Solve QP by searching for I
? one equality constraint problem solved at each iteration
? optimality conditions (KKT conditions) identify solution
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Active constraints – example
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A QP problem with 5 inequality constraints
active set at solution: I = {2}
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Active constraints – example
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An equivalent equality constraint problem
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QP solvers: (a) Active set

B Computation:

O(N3n3u) additions/multiplications per iteration (conservative estimate)

upper bound on number of iterations is exponential in problem size

B At each iteration choose trial active set using: cost gradient
Lagrange multipliers (constraint sensitivities)

The number of iterations needed is often small in practice

B In MPC u∗k = u∗(xk) and Ik = I(xk)

hence initialize solver at time k using the solution computed at k − 1
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QP solvers: (b) Interior point

B Solve an unconstrained problem at each iteration:

u(µ) = min
u
µ
(
u>Hu + 2f>u

)
+ φ(u)

where

φ(u) = barrier function (φ→∞ at constraints)

u→ u∗ as µ→∞

Increase µ until φ(u∗) > 1/ε (ε = user-defined tolerance)

B # arithmetic operations per iteration is constant, e.g. O(N3n3u)

# iterations for given ε is polynomial in problem size

⇓
Computational advantages for large-scale problems

e.g. # variables > 102, # constraints > 103

B No general method for initializing at solution estimate
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Interior point method – example
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u(µ)→ u∗ = 1 as µ→∞
but minu µ

(
u>Hu + 2f>u

)
+ φ(u) becomes ill-conditioned as µ→∞
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QP solvers: (c) Multiparametric

Let u∗(x) = arg min
u

u>Hu + 2x>F>u

subject to Au ≤ b+Bx

then:

? u∗ is a continous function of x

? u∗(x) = Kjx+ kj for all x in a polytopic set Xj

B In principle each Kj , kj and Xj can be determined offline

B Large number of sets Xj (combinatorial in problem size)

so online determination of j such that xk ∈ Xj is difficult
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Multiparametric QP – example
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Model: (A,B,C) as before,

cost: Q = C>C, R = 1, horizon: N = 10

constraints: −1 ≤ u ≤ 1, −1 ≤ x/8 ≤ 1
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Summary

B Predicted control inputs: uk =

 u0|k
...

uN−1|k


and states: xk =

x1|k...
xN |k

 =Mxk + Cuk

B Predicted cost: J(xk,uk) =

N−1∑
i=0

(
‖xi|k‖2Q + ‖ui|k‖2R

)
+ ‖xN |k‖2P

= u>k Huk + 2x>k F
>uk + x>k Gxk

B Online optimization subject to linear state and input constraints is a QP:

minimize
u

u>Hu + 2x>k F
>u

subject to Acu ≤ bc +Bcxk
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Lecture 3

Closed loop properties of MPC
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Closed loop properties of MPC

Review: infinite horizon cost

Infinite horizon predictive control with constraints

Closed loop stability

Constraint-checking horizon

Connection with constrained optimal control
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Review: infinite horizon cost

Short prediction horizons cause poor performance and instability, so

? use an infinite horizon cost: J(xk,uk) =

∞∑
i=0

(
‖xi|k‖2Q + ‖ui|k‖2R

)

? keep optimization finite-dimensional by using dual mode predictions:

ui|k =

{
optimization variables i = 0, . . . , N − 1, mode 1

Kxi|k i = N,N + 1, . . . mode 2

mode 1: uk =

 u0|k
...

uN−1|k

 uk optimized online

mode 2: ui|k = Kxi|k K chosen offline
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Review: infinite horizon cost

B Cost for mode 2:
∞∑
i=N

(
‖xi|k‖2Q + ‖ui|k‖2R

)
= ‖xN |k‖2P

P is the solution of the Lyapunov equation

P − (A+BK)>P (A+BK) = Q+K>RK

B Infinite horizon cost:

J(xk,uk) =

N−1∑
i=0

(
‖xi|k‖2Q + ‖ui|k‖2R

)
+ ‖xN |k‖2P

= u>k Huk + 2x>k F
>uk + x>k Gxk
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Review: MPC online optimization

B Unconstrained optimization: ∇uJ(x,u∗) = 2Hu∗ + 2Fx = 0, so

u∗(x) = −H−1Fx

=⇒ linear controller: uk = KMPCxk

KMPC = LQ-optimal if K = LQ-optimal (in mode 2)

B Constrained optimization:

u∗(x) = arg min
u

u>Hu + 2x>F>u

subject to Acu ≤ bc +Bcx

=⇒ nonlinear controller: uk = KMPC(xk)
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Constrained MPC – example

B Plant model: xk+1 = Axk +Buk, yk = Cxk

A =

[
1.1 2
0 0.95

]
, B =

[
0

0.0787

]
, C =

[
−1 1

]
Constraints: −1 ≤ uk ≤ 1

B MPC optimization (constraints applied only to mode 1 predictions):

minimize
u

N−1∑
i=0

(
‖xi|k‖2Q + ‖ui|k‖2R

)
+ ‖xN |k‖2P

subject to − 1 ≤ ui|k ≤ 1, i = 0, . . . , N − 1

Q = C>C, R = 0.01, N = 2

. . . performance? stability?
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Constrained MPC – example

Closed loop response for x0 = (0.8,−0.8)
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Constrained MPC – example

Closed loop response for x0 = (0.5,−0.5)
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Constrained MPC – example

Optimal predicted cost x0 = (0.5,−0.5)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

sample, k

P
re

di
ct

ed
 c

os
t J

(k
)

. . . increasing Jk =⇒ closed loop response does not follow predicted trajectory

3 - 9



Stability analysis

How can we guarantee the closed loop stability of MPC?

(a). Show that a Lyapunov function exists demonstrating stability

(b). Ensure that optimization feasible is at each time k = 0, 1, . . .

B For Lyapunov stability analysis:

? consider first the unconstrained problem

? use predicted cost as a trial Lyapunov function

B Guarantee feasibility of the MPC optimization recursively

by ensuring that feasibility at time k implies feasibility at k + 1
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Discrete time Lyapunov stability

Consider the system xk+1 = f(xk), with f(0) = 0

B Definition: x = 0 is a stable equilibrium point if

maxk ‖xk‖ can be made arbitrarily small

by making x0 sufficiently small

B If continuously differentiable V (x) exists with

(i). V (x) is positive definite and

(ii). V (xk+1)− V (xk) ≤ 0

then x = 0 is a stable equilibrium point
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Discrete time Lyapunov stability

Consider the system xk+1 = f(xk), with f(0) = 0

B Definition: x = 0 is an asymptotically stable equilibrium point if

(i). x = 0 is stable and

(ii). r exists such that ‖x0‖ < r =⇒ lim
k→∞

xk = 0

B If continuously differentiable V (x) exists with

(i). V (x) is positive definite and

(ii). V (xk+1)− V (xk) < 0 whenever xk 6= 0

then x = 0 is an asymptotically stable equilibrium point
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Lyapunov stability

Trial Lyapunov function:

J∗(xk) = J(xk,u
∗
k)

where J(xk,uk) =

∞∑
i=0

(
‖xi|k‖2Q + ‖ui|k‖2R

)
? J∗(x) is positive definite if:

(a). R � 0 and Q � 0, or

(b). R � 0 and Q � 0 and (A,Q1/2) is observable

since then J∗(xk) ≥ 0 and J∗(xk) = 0 if and only if xk = 0

? J∗(x) is continuously differentiable

. . . from analysis of MPC optimization as a multiparametric QP

3 - 13



Lyapunov stability

Construct a bound on J∗(xk+1)− J∗(xk) using the “tail” of the
optimal prediction at time k

u

i
optimal at k

tail at k + 1

0 1 N−1 N

Optimal predicted sequences at time k:

u∗k =



u∗0|k
u∗1|k

...
u∗N−1|k
Kx∗N|k

...


x∗k =



x∗0|k
x∗1|k

...
x∗N|k

Φx∗N|k
...


(Φ = A+BK)

optimal at k : J∗(xk) = J(xk,u
∗
k) =

∞∑
i=0

(
‖x∗i|k‖

2
Q + ‖u∗i|k‖

2
R

)
tail at k + 1 : J̃(xk+1) = J(xk+1, ũk+1) =

∞∑
i=1

(
‖x∗i|k‖

2
Q + ‖u∗i|k‖

2
R

)
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Lyapunov stability

Construct a bound on J∗(xk+1)− J∗(xk) using the “tail” of the
optimal prediction at time k

Predicted cost for the tail:

J̃(xk+1) = J∗(xk)− ‖xk‖2Q − ‖uk‖2R

but ũk+1 is suboptimal at time k + 1, so

J∗(xk+1) ≤ J̃(xk+1)

Therefore

J∗(xk+1) ≤ J∗(xk)− ‖xk‖2Q − ‖uk‖2R
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Lyapunov stability

The bound J∗(xk+1)− J∗(xk) ≤ −‖xk‖2Q − ‖uk‖2R implies:

(i). the closed loop cost cannot exceed the initial predicted cost,
since summing both sides over all k ≥ 0 gives

∞∑
k=0

(
‖xk‖2Q + ‖uk‖2R

)
≤ J∗(x0)

(ii). x = 0 is asymptotically stable

? if R � 0 and Q � 0, this follows from Lyapunov’s direct method

? if R � 0, Q � 0 and (A,Q1/2) observable, this follows from:

(a). stability of x = 0 ⇐ Lyapunov’s direct method

(b). lim
k→∞

(‖xk‖2Q + ‖uk‖2R) = 0 ⇐
∑∞
k=0

(
‖xk‖2Q + ‖uk‖2R

)
<∞
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Stability analysis

How can we guarantee the closed loop stability of MPC?

(a). Show that a Lyapunov function exists demonstrating stability

(b). Ensure that optimization feasible is at each time k = 0, 1, . . .

B For Lyapunov stability analysis:

? consider first the unconstrained problem

? use predicted cost as a trial Lyapunov function

B Guarantee feasibility of the MPC optimization recursively

by ensuring that feasibility at time k =⇒ feasibility at k + 1
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Terminal constraint

The basic idea

terminal set

origin

stabilizing linear controller satisfies constraints
�
���

more sophisticated controller needed to satisfy constraints

�
�
�
��
 ?

@
@
@
@R
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Terminal constraint

Terminal constraint: xN |k ∈ Ω, where Ω = terminal set

xk
x1|k

xN−1|k

xN|k

xN+1|k

safe region
for mode 2
control law

Choose Ω so that:

(a). x ∈ Ω =⇒
{
u ≤ Kx ≤ u
x ≤ x ≤ x

(b). x ∈ Ω =⇒ (A+BK)x ∈ Ω

then Ω is invariant for the mode 2 dynamics and constraints, so

xN |k ∈ Ω =⇒
{
u ≤ ui|k ≤ u
x ≤ xi|k ≤ x

for i = N,N + 1, . . .

i.e. constraints are satisfied over
the infinite mode 2 prediction horizon
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Stability of constrained MPC

Prototype MPC algorithm

At each time k = 0, 1, . . .

(i). solve u∗k = arg min
uk

J(xk,uk)

s.t. u ≤ ui|k ≤ u, i = 0, . . . , N − 1

x ≤ xi|k ≤ x, i = 1, . . . , N

xN |k ∈ Ω

(ii). apply uk = u∗0|k to the system

Asymptotically stabilizes x = 0 with region of attraction FN ,

FN =

x0 : ∃ {u0, . . . , uN−1} such that

u ≤ ui ≤ u, i = 0, . . . , N − 1

x ≤ xi ≤ x, i = 1, . . . , N

xN ∈ Ω


= the set of all feasible initial conditions for N -step horizon

and terminal set Ω
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Terminal constraints

Make Ω as large as possible so that the feasible set FN is maximized, i.e.

Ω = X∞ = lim
j→∞

Xj

where

? Xj = initial conditions for which constraints are satisfied for j steps
with u = Kx

=

{
x :

u ≤ K(A+BK)ix ≤ u
x ≤ (A+BK)ix ≤ x

i = 0, . . . , j

}
? X∞ = Xν for some finite ν if |eig(A+BK)| < 1

⇓

x ∈ X∞ if constraints are satisfied on a finite constraint checking horizon
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Terminal constraints – Example

Plant model: xk+1 = Axk +Buk, yk = Cxk

A =

[
1.1 2
0 0.95

]
B =

[
0

0.0787

]
C =

[
−1 1

]
input constraints: −1 ≤ uk ≤ 1

mode 2 feedback law: K =
[
−1.19 −7.88

]
= KLQ for Q = C>C, R = 1
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Terminal constraints – example

Constraints: −1 ≤ u ≤ 1
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Terminal constraints – example

Constraints: −1 ≤ u ≤ 1
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X4 = X5 = · · · = Xj for all j > 4 so X4 = X∞
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Terminal constraints – example

In this example X∞ is determined in a finite number of steps because

A (A+BK) is strictly stable, and

B

(
(A+BK),K

)
is observable

A ⇒
{

shortest distance of hyperplane

K(A+BK)ix ≤ 1 from origin

}
=

1

‖K(A+BK)i‖2
→∞ as i→∞

B ⇒ X∞ is bounded because x0 /∈ X∞ if x0 is sufficiently large

Here {x : −1 ≤ K(A+BK)ix ≤ 1} contains X4 for i > 4

⇓

X∞ = X4

constraint checking horizon: ν = 4
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Terminal constraints

General case

Let Xj = {x : FΦix ≤ 1, i = 0, . . . j} with

{
Φ strictly stable
(Φ, F ) observable

then:
(i). X∞ = Xν for finite ν

(ii). Xν = X∞ iff x ∈ Xν+1 whenever x ∈ Xν

Proof of (ii)

(a). for any j, Xj+1 = Xj ∩
{
x : FΦj+1x ≤ 1

}
so Xj ⊇ Xj+1 ⊇ limj→∞ Xj = X∞

(b). if x ∈ Xν+1 whenever x ∈ Xν , then Φx ∈ Xν whenever x ∈ Xν

but Xν ⊆
{
x : Fx ≤ 1

}
and it follows that Xν ⊆ X∞

(a) & (b) ⇒ Xν = X∞
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Terminal constraints – constraint checking horizon

Algorithm for computing constraint checking horizon Nc
for input constraints u ≤ u ≤ u:

C4A Model Predictive Control 3 - 28 

Terminal constraint set 

Algorithm  (computation of     ) : 

   

umax := max
x

K ( A+ BK )N+1 x s.t. u ! K ( A+ BK )i x ! u , i = 0,…N

umin := min
x

K ( A+ BK )N+1 x s.t. u ! K ( A+ BK )i x ! u , i = 0,…N

  Nc := N

  N := 0

   

umax ! u ?
and

umin " u ?
  N := N +1 no 

yes 

2 linear programs 
solved at each step 
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Constrained MPC

Define the terminal set Ω as XNc

MPC algorithm

At each time k = 0, 1, . . .

(i). solve u∗k = arg min
uk

J(xk,uk)

s.t. u ≤ ui|k ≤ u, i = 0, . . . , N +Nc

x ≤ xi|k ≤ x, i = 1, . . . , N +Nc

(ii). apply uk = u∗0|k to the system

Note

? predictions for i = N, . . .N +Nc:

{
xi|k = (A+BK)i−NxN |k

ui|k = K(A+BK)i−NxN |k

? xN |k ∈ XNc implies linear constraints so online optimization is a QP
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Closed loop performance

Longer horizon N ensures improved predicted cost J∗(x0)

and is likely (but not certain) to give better closed-loop performance

Example: Cost vs N for x0 = (−7.5, 0.5)

N 6 7 8 11 > 11
J∗(x0) 364.2 357.0 356.3 356.0 356.0
Jcl(x0) 356.0 356.0 356.0 356.0 356.0

Closed loop cost: Jcl(x0) :=
∑∞
k=0

(
‖xk‖2Q + ‖uk‖2R

)
For this initial condition:

MPC with N = 11 is identical to constrained LQ optimal control (N =∞)!
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Closed loop performance – example

Predicted and closed loop inputs for N = 6
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Closed loop performance – example

Predicted and closed loop states for N = 6
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Closed loop performance – example

Predicted and closed loop states for N = 11
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Choice of mode 1 horizon – performance

B For this x0: N = 11 ⇒ xN |0 lies in the interior of Ω

m

terminal constraint is inactive

⇓

no reduction in cost for N > 11

B Constrained LQ optimal performance is always obtained with N ≥ N∞
for some finite N∞ dependent on x0

B N∞ may be large, implying high computational load
but closed loop performance is often close to optimal for N < N∞

(due to receding horizon)

in this example Jcl(x0) ≈ optimal for N ≥ 6
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Choice of mode 1 horizon – region of attraction

Increasing N increases the feasible set FN
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Summary

B Linear MPC ingredients:

? Infinite cost horizon (via terminal cost)

? Terminal constraints (via constraint-checking horizon)

B Constraints are satisfied over an infinite prediction horizon

B Closed-loop system is asymptotically stable
with region of attraction equal to the set of feasible initial conditions

B Ideal optimal performance if mode 1 horizon N is large enough
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Lecture 4

Robustness to disturbances
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Robustness to disturbances

Review of nominal model predictive control

Setpoint tracking and integral action

Robustness to unknown disturbances

Handling time-varying disturbances
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Review

MPC with guaranteed stability – the basic idea

terminal set

origin

stabilizing linear controller satisfies constraints
�
���

more sophisticated controller needed to satisfy constraints

�
�
�
��
 ?

@
@
@
@R
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Review

MPC optimization for linear model xk+1 = Axk +Buk

minimize
uk

N−1∑
i=0

(
‖xi|k‖2Q + ‖ui|k‖2R

)
+ ‖xN |k‖2P

subject to u ≤ ui|k ≤ u, i = 0, . . . , N +Nc

x ≤ xi|k ≤ x, i = 1, . . . , N +Nc

where

? ui|k = Kxi|k for i ≥ N , with K = unconstrained LQ optimal

? terminal cost: ‖xN|k‖2P =

∞∑
i=N

(‖xi|k‖2Q + ‖ui|k‖2R), with

P − ΦTPΦ = Q+KTRK, Φ = A+BK

? terminal constraints are defined by the constraint checking horizon Nc:

u ≤ KΦix ≤ u
x ≤ Φix ≤ x

}
i = 0, . . . , Nc =⇒

{
u ≤ KΦNc+1x ≤ u
x ≤ ΦNc+1x ≤ x
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Review

MPC optimization for nonlinear model xk+1 = f(xk, uk)

minimize
uk

N−1∑
i=0

(
‖xi|k‖2Q + ‖ui|k‖2R

)
+ ‖xN |k‖2P

subject to u ≤ ui|k ≤ u, i = 0, . . . , N − 1

x ≤ xi|k ≤ x, i = 1, . . . , N − 1

xN |k ∈ Ω

with

? mode 2 feedback: ui|k = κ(xi|k) asymptotically stabilizes x = 0 (locally)

? terminal cost: ‖xN|k‖2P ≥
∞∑
i=N

(‖xi|k‖2Q + ‖ui|k‖2R)

for mode 2 dynamics: xi+1|k = f
(
xi|k, κ(xi|k)

)
? terminal constraint set Ω: invariant for mode 2 dynamics and constraints

f
(
x, κ(x)

)
∈ Ω

u ≤ κ(x) ≤ u, x ≤ x ≤ x

}
for all x ∈ Ω
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)
? terminal constraint set Ω: invariant for mode 2 dynamics and constraints

f
(
x, κ(x)

)
∈ Ω

u ≤ κ(x) ≤ u, x ≤ x ≤ x

}
for all x ∈ Ω
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Comparison

B Linear MPC

terminal cost ←− exact cost over the mode 2 horizon

terminal constraint set ←− contains all feasible initial conditions
for mode 2

B Nonlinear MPC

terminal cost ←− upper bound on cost over
mode 2 horizon

terminal constraint set ←− invariant set (usually not the largest)
for mode 2 dynamics and constraints
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Model uncertainty
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Model uncertainty

Common causes of model error and uncertainty:

I Unknown or time-varying model parameters

B unknown loads & inertias, static friction

B unknown d.c. gain

I Random (stochastic) model parameters

B random process noise or sensor noise

I Incomplete measurement of states

B state estimation error
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Setpoint tracking

I Output setpoint: y0

y → y0 ⇒
{
x→ x0

u→ u0
where

x0 = Ax0 +Bu0

y0 = Cx0

⇓
y0 = C(I −A)−1Bu0

I Setpoint for (u0, x0) is unique iff C(I −A)−1B is invertible

e.g. if dim(u) = dim(y), then

{
u0 =

(
C(I −A)−1B

)−1
y0

x0 = (I −A)−1Bu0

I Tracking problem: yk → y0 subject to

{
u ≤ uk ≤ u
x ≤ xk ≤ x

is only feasible if u ≤ u0 ≤ u and x ≤ x0 ≤ x
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Setpoint tracking

I Unconstrained tracking problem:

minimize
uδk

∞∑
i=0

(
‖xδi|k‖

2
Q + ‖uδi|k‖

2
R

)
where xδ = x− x0

uδ = u− u0

has optimal solution: uk = Kxδk + u0, K = KLQ

I Constrained tracking problem:

minimize
uδk

∞∑
i=0

(
‖xδi|k‖

2
Q + ‖uδi|k‖

2
R

)
subject to u ≤ uδi|k + u0 ≤ u, i = 0, 1, . . .

x ≤ xδi|k + x0 ≤ x, i = 1, 2, . . .

has optimal solution: uk = uδ∗0|k + u0
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Setpoint tracking

If û0 is used instead of u0 (e.g. if d.c. gain C(I −A)−1B unknown)

then uk = uδ∗0|k + û0 implies

uδk = uδ∗0|k + (û0 − u0)

xδk+1 = Axδk +Buδ∗0|k +B (û0 − u0)︸ ︷︷ ︸
constant disturbance

and if uδ∗0|k → Kxδk as k →∞, then

lim
k→∞

xδk = (I −A−BK)−1B(û0 − u0) 6= 0

lim
k→∞

yk − y0 = C(I −A−BK)−1B(û0 − u0)︸ ︷︷ ︸
steady state tracking error

6= 0
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Additive disturbances

Convert (constant) setpoint tracking problem into a regulation problem:

x← xδ, y ← yδ, u← uδ

Consider the effect of additive disturbance w:

xk+1 = Axk +Buk +Dwk,

yk = Cxk

Assume that wk is unknown at time k, but is known to be:

? constant (wk = w for all k) or time-varying

? within a known polytopic set: wk ∈ W for all k

where W = conv{w(1), . . . , w(r)}
or W = {w : Hw ≤ 1}

W

w(1)

w(2)

w(3)

w(4)

w(5)

w(6)
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Integral action (no constraints)

Introduce integral action to remove steady state error in y

by considering the augmented system:

zk =

[
xk
vk

]
, zk+1 =

[
A 0
C I

]
zk +

[
B
0

]
uk +

[
D
0

]
wk

vk = integrator state

vk+1 = vk + yk

? Linear feedback uk = Kxk +KIvk

is stabilizing if

∣∣∣∣eig

([
A+BK BKI

C I

])∣∣∣∣ < 1

? If the closed-loop system is (strictly) stable and wk → w = constant

then uk → uss =⇒ vk → vss =⇒ yk → 0 even if w 6= 0

but arbitrary KI may destabilize the closed loop system
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Integral action (no constraints)

Ensure stability by using a modified cost:

minimize
uk

∞∑
i=0

(
‖zi|k‖2Qz + ‖ui|k‖2R

)
Qz =

[
Q 0
0 QI

]
� 0

with predictions generated by an augmented model

zi+1|k =

[
A 0
C I

]
zi|k +

[
B
0

]
ui|k, z0|k =

[
xk
vk

]
? this is a “nominal” prediction model since wk = 0 is assumed

? unconstrained solution: uk = Kzzk = Kxk +KIvk

? if R � 0,

([
A 0
C I

]
,

[
Q 0
0 QI

])
is observable and wk → w = constant

then uk → uss =⇒ vk → vss =⇒ yk → 0
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Integral action – example

Plant model:

xk+1 = Axk +Buk +Dw yk = Cxk

A =

[
1.1 2
0 0.95

]
B =

[
0

0.0787

]
D =

[
1
0

]
C =

[
−1 1

]
Constraints: none

Cost weighting matrices: Qz =

[
CTC 0

0 0.01

]
, R = 1

Unconstrained LQ optimal feedback gain:

Kz =
[
−1.625 −9.033 0.069

]
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Integral action – example

+ integrator
no integrator

0 10 20 30 40 50

u
-1

0

1

2

3

4
+ integrator
no integrator

sample k
0 10 20 30 40 50

y

-1

-0.5

0

0.5

1

1.5

Closed loop response for initial condition: x0 = (0.5,−0.5)
no disturbance: w = 0
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Integral action – example

+ integrator
no integrator

0 10 20 30 40 50

u
-2
-1
0
1
2
3
4

+ integrator
no integrator

sample k
0 10 20 30 40 50

y

-5

-4

-3

-2

-1

0

Closed loop response for initial condition: x0 = (0.5,−0.5)
constant disturbance: w = 0.75
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Constrained MPC

Naive constrained MPC strategy: w = 0 assumed in predictions

minimize
uk

N−1∑
i=0

(
‖zi|k‖2Qz + ‖ui|k‖2R

)
+ ‖zN |k‖2P

subject to u ≤ ui|k ≤ u, i = 0, . . . , N +Nc

x ≤ xi|k ≤ x, i = 1, . . . , N +Nc

with: P and Nc determined for mode 2 control law ui|k = Kzzi|k

and initial prediction state: z0|k =

[
xk
vk

]
where vk+1 = vk + yk

? If closed loop system is stable

then uk → uss =⇒ vk → vss =⇒ yk → 0

? but disturbance wk is ignored in predictions, so{
J∗(zk+1)− J∗(zk) 6≤ 0

feasibility at time k 6⇒ feasibility at k + 1

therefore no guarantee of stability
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Constrained MPC – example

constraints
violated

�
��*

Closed loop response with initial condition: x0 = (0.5,−0.5)
constraints: −1 ≤ u ≤ 1 disturbance: w = 0.75
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Robust constraints

If predictions satisfy constraints

{
for all prediction times i = 0, 1, . . .

for all disturbances wi ∈ W

then feasibility of constraints at time k ensures feasibility at time k + 1

B Decompose predictions into

nominal predicted state si|k
uncertain predicted state ei|k

where

xi|k = si|k + ei|k

{
si+1|k = Φsi|k +Bci|k s0|k = xk

ei+1|k = Φei|k +Dwi|k e0|k = 0

B Pre-stabilized predictions:

ui|k = Kxi|k + ci|k and Φ = A+BK

where K = KLQ is the unconstrained LQ optimal gain
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Pre-stabilized predictions – example

Scalar system: xk+1 = 2xk + uk + wk, constraint: |xk| ≤ 2

uncertainty: ei|k =

i−1∑
j=0

2jw = (2i − 1)w, disturbance: wk = w
|w| ≤ 1

Robust constraints:

|si|k + ei|k| ≤ 2 for all |w| ≤ 1

m

|si|k| ≤ 2−max|w|≤1|ei|k|

⇓

|si|k| ≤ 2− (2i − 1)

⇓

infeasible for all i > 1 sample
0 1 2 3 4 5

-10

-8

-6

-4

-2

0

2

4

6

8

10

upper bound on ei|k

@@R

lower bound on ei|k
���
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Pre-stabilized predictions – example

Avoid infeasibility by using pre-stabilized predictions:

ui|k = Kxi|k + ci|k, K = −1.9, ci|k =

{
free i = 0, . . . , N − 1

0 i ≥ N

stable predictions: ei|k =

i−1∑
j=0

0.1jw = (1− 0.1i)w/0.9, |w| ≤ 1

Robust constraints:

|si|k + ei|k| ≤ 2 for all |w| ≤ 1

m

|si|k| ≤ 2−max|w|≤1|ei|k|

⇓

|si|k| ≤ 2− (1− 0.1i)/0.9︸ ︷︷ ︸
>0 for all i

sample
0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

upper bound on ei|k

?

lower bound on ei|k

6
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Pre-stabilized predictions

B Feedback structure of MPC with open loop predictions:

PlantMPC
Optimization

- -- xu

?
w

B Feedback structure of MPC with pre-stabilized predictions:

Stablizing
feedback

PlantMPC
Optimization

6

g- - -

�

- xuc

Kx

+ +

?
w
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General form of robust constraints

How can we impose (general linear) constraints robustly?

? Pre-stabilized predictions:

xi|k = si|k + ei|k

{
si+1|k = Φsi|k +Bci|k s0|k = xk

ei+1|k = Φei|k +Dwi|k e0|k = 0

=⇒ ei|k = Dwi−1 + ΦDwi−2 + · · ·+ Φi−1Dw0

? General linear constraints: Fxi|k +Gui|k ≤ 1

are equivalent to tightened constraints on nominal predictions:

(F +GK)si|k +Gci|k ≤ 1− hi

where h0 = 0

hi = max
w0,...,wi−1∈W

(F +GK)ei|k, i = 1, 2, . . .

(i.e. hi = hi−1 + maxw∈W(F +GK)w
requiring one LP for each row of hi)
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Tube interpretation

The uncertainty in predictions: ei+1|k = Φei|k +Dwi, wi ∈ W
evolves inside a tube (a sequence of sets): ei|k ∈ Ei|k, where

Ei|k = DW ⊕ ΦDW ⊕ · · · ⊕ Φi−1DW, i = 1, 2, . . .

Hence we can define:

? a state tube xi|k = si|k + ei|k ∈ Xi|k
Xi|k = {si|k} ⊕ Ei|k, i = 0, 1, . . .

? a control input tube ui|k = Kxi|k + ci|k = Ksi|k + ci|k +Kei|k ∈ Ui|k
Ui|k = {Ksi|k + ci|k} ⊕KEi|k, i = 0, 1, . . .

and impose constraints robustly for the state and input tubes

(where ⊕ is Minkowski set addition)
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Tube interpretation

The uncertainty in predictions: ei+1|k = Φei|k +Dwi, wi ∈ W
evolves inside a tube (a sequence of sets): ei|k ∈ Ei|k, where

Ei|k = DW ⊕ ΦDW ⊕ · · · ⊕ Φi−1DW, i = 1, 2, . . .

e.g. for constraints Fx ≤ 1 (G = 0)

s0|k

X1|k
���

s1|k

s2|k

X2|k
���

s3|k

X3|k
���

s4|k

X4|k
���

sample

Fx = 1

?

Xi|k = {si|k} ⊕ Ei|k
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Robust MPC

Prototype robust MPC algorithm

Offline: compute Nc and h1, . . . , hNc . Online at k = 0, 1, . . .:

(i). solve c∗k = arg min
ck

J(xk, ck)

s.t. (F +GK)si|k +Gci|k ≤ 1− hi, i = 0, . . . , N +Nc

(ii). apply uk = Kxk + c∗0|k to the system

? tightened linear constraints are applied to nominal predictions

? Nc is the constraint-checking horizon defined by:

(F +GK)ΦNc+1s ≤ 1− hNc+1

for all s satisfying (F +GK)Φis ≤ 1− hi, i = 0, . . . , Nc

? the online optimization is robustly recursively feasible
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Robust MPC

Prototype robust MPC algorithm

Offline: compute Nc and h1, . . . , hNc . Online at k = 0, 1, . . .:

(i). solve c∗k = arg min
ck

J(xk, ck)

s.t. (F +GK)si|k +Gci|k ≤ 1− hi, i = 0, . . . , N +Nc

(ii). apply uk = Kxk + c∗0|k to the system

nominal cost, evaluated assuming wi = 0 for all i:

J(xk, ck) =

∞∑
i=0

(
‖si|k‖2Q + ‖Ksi|k + ci|k‖2R

)
= ‖xk‖2P + ‖ck‖2Wc

(one possible choice)
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Convergence of robust MPC with nominal cost

If ui|k = Kxi|k + ci|k for K = KLQ, then:

? the unconstrained solution is ck = 0, so the nominal cost is

J(xk, ck) = ‖xk‖2P + ‖ck‖2Wc

and Wc is block-diagonal: Wc = diag{Pc, . . . , Pc}

? recursive feasibility ⇒ c̃k+1 = (c∗1|k, . . . , c
∗
N−1|k, 0) feasible at k + 1

? hence ‖c∗k+1‖2Wc
≤ ‖c∗k‖2Wc

− ‖c∗0|k‖
2
Pc

⇒
∞∑
k=0

‖c0|k‖2Pc ≤ ‖c
∗
0‖2Wc

<∞

⇒ limk→∞ c0|k = 0

? therefore uk → Kxk as k →∞
xk → the (minimal) robustly invariant set

under unconstrained LQ optimal feedback
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Robust MPC with constant disturbance

Assume wk = w = constant for all k

combine: pre-stabilized predictions
augmented state space model

? Predicted state and input sequences:

xi|k =
[
I 0

]
(si|k + ei|k)

ui|k = Kz(si|k + ei|k) + ci|k

? Prediction model:

nominal si+1|k = Φsi|k +

[
B
0

]
ci|k Φ =

[
A 0
C I

]
+

[
B
0

]
Kz

uncertain ei|k =

i−1∑
j=0

Φj
[
D
0

]
w s0|k =

[
xk
vk

]
, e0|k = 0

? Nominal cost:

J(xk, vk, ck) =

∞∑
i=0

(
‖si|k‖2Qz + ‖Kzsi|k + ci|k‖2R

)
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Robust MPC with constant disturbance

Assume wk = w = constant for all k

combine: pre-stabilized predictions
augmented state space model

? robust state constraints:

x ≤ xi|k ≤ x ⇐⇒ x+ hi ≤ si|k ≤ x− hi

hi = max
w∈W

[
I 0

] i−1∑
j=0

Φj
[
D
0

]
w

? robust input constraints:

u ≤ ui|k ≤ u ⇐⇒ u+ h′i ≤ Kzsi|k + ci|k ≤ u− h′i

h′i = max
w∈W

Kz

i−1∑
j=0

Φj
[
D
0

]
w

? Nc and hi, h
′
i for i = 1, . . . , Nc can be computed offline
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Robust MPC with constant disturbance – example

+ integrator
no integrator

0 10 20 30 40 50

u
-1

-0.5

0

0.5

1 + integrator
no integrator

sample k
0 10 20 30 40 50

y

-6
-5
-4
-3
-2
-1
0
1

Closed loop response with initial condition: x0 = (0.5,−0.5)
constraints: −1 ≤ u ≤ 1 disturbance: w = 0.75
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Summary

B Integral action: augment model with integrated output error
include integrated output error in cost

then

(i). closed loop system is stable if w = 0

(ii). steady state error must be zero if response is stable for w 6= 0

B Robust MPC: use pre-stabilized predictions
apply constraints for all possible future uncertainty

then

(i). constraint feasibility is guaranteed at all times if initially feasible

(ii). closed loop system inherits the stability and convergence properties
of unconstrained LQ optimal control (assuming nominal cost)
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Overview of the course

1 Introduction and Motivation

Basic MPC strategy; prediction models; input and state constraints; constraint handling:
saturation, anti-windup, predictive control

2 Prediction and optimization

Input/state prediction equations; unconstrained optimization. Infinite horizon cost; dual mode
predictions. Incorporating constraints; quadratic programming.

3 Closed loop properties

Lyapunov analysis based on predicted cost. Recursive feasibility; terminal constraints; the
constraint checking horizon. Constrained LQ-optimal control.

4 Robustness to disturbances

Setpoint tracking; MPC with integral action. Robustness to constant disturbances:
prestabilized predictions and robust feasibility. Handling time-varying disturbances.
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