### C21 Model Predictive Control

Mark Cannon

4 lectures

Hilary Term 2023

Department of Engineering Science eng.ox.ac.uk/control



Lecture 1

Introduction

#### Organisation

- 4 lectures –
   LR2, weeks 3 & 4
   Monday at 15.00 & Friday at 12.00
   recordings available on Canvas
- Examples class LR3, week 5 Friday at 14:00, 16:00 or 17:00 sign up on Canvas

### Course outline

- 1. Introduction to predictive control
- 2. Prediction and optimization
- 3. Closed loop properties
- 4. Disturbances and integral action
- 5. Robust tube MPC

- J.M. Maciejowski, Predictive control with constraints. Prentice Hall, 2002
   Recommended reading: Chapters 1–3, 6 & 8
- ▷ J.B. Rawlings and D.Q. Mayne, *Model Predictive Control: Theory and Design*. Nob Hill Publishing, 2009
- B. Kouvaritakis and M. Cannon, Model Predictive Control: Classical, Robust and Stochastic, Springer 2015

Recommended reading: Chapters 1, 2 & 3

How does a thermostat regulate room temperature?



Closed loop control system:





System model:

Switching controller:



 $\star$  Single controller parameter: hysteresis band  $\delta$ 

 $\star$  Accurate models aren't needed to regulate T to  $[T^0-\delta,T^0+\delta]$ 



System model:

Closed loop response:

$$C\frac{dT}{dt} = q - q_L$$

$$T(t) = T_{ss} + (T(0) - T_{ss})e^{-t/\tau}$$

$$q_L = \beta T$$

$$q = \alpha u$$

$$u = \begin{cases} U & \text{if ON} \\ 0 & \text{if OFF} \end{cases}$$

$$\tau = \frac{C}{\beta}$$

 $\star$  Single controller parameter: hysteresis band  $\delta$ 

 $\star$  Accurate models aren't needed to regulate T to  $[T^0-\delta,T^0+\delta]$ 



System model:

Closed loop response:



- $\star$  Single controller parameter: hysteresis band  $\delta$
- $\star$  Accurate models aren't needed to regulate T to  $[T^0-\delta,T^0+\delta]$

Motivating example: proportional control (P)



System model:

Closed loop response:

$$C\frac{dT}{dt} = q - q_L$$

$$T(t) = T_{ss} + (T(0) - T_{ss})e^{-t/\tau}$$

$$T_{ss} = \frac{\alpha K}{\alpha K + \beta}T^0$$

$$T_{ss} = \frac{C}{\alpha K + \beta}T^0$$

$$T_{ss} = \frac{C}{\alpha K + \beta}T^0$$

 $\star$  Controller parameter: gain K

 $\star~T_{ss} \to T^0 ~{\rm and}~ \tau \to 0$  as  $K \to \infty$  independent of parameters C ,  $\alpha,~\beta$ 

### Motivating example: proportional control (P)

Controller:  $u = K(T^0 - T)$ 

Effect of increasing gain (ideal case),  $K_1 < K_2 < K_3$ :



High gain K is often de-stabilizing because of:

- $\star$  nonlinearity, e.g. actuator saturation:  $u = \min \left\{ ar{u}, \max \{ K(T^0 T), 0 \} 
  ight\}$
- $\star$  additional dynamics, e.g. sensor and actuator time-delay or lag

# Motivating example: proportional control (P)

Controller:  $u = K(T^0 - T)$ 

Actual effect of increasing gain:



High gain K is often de-stabilizing because of:

- $\star$  nonlinearity, e.g. actuator saturation:  $u = \min \left\{ \bar{u}, \max \left\{ K(T^0 T), 0 \right\} \right\}$
- $\star$  additional dynamics, e.g. sensor and actuator time-delay or lag

# Motivating example: proportional + integral control (PI)

Control signal proportional to tracking error and integral of tracking error:

$$u = K(T^{0} - T) + \frac{K}{T_{i}} \int^{t} (T^{0} - T) dt$$



 $\star\,$  If closed loop system is stable then  $T^0-T(t)\to 0$  as  $t\to\infty,$  i.e. no steady state error

(assuming  $T^0 = \text{constant}$ )

 $\star$  Controller has no knowledge of model parameters but increasing gain  $(K/T_i)$  generally degrades transient performance

(overshoot and oscillations)

 $\star$  Two controller parameters K,  $T_i$  to be tuned/optimized

#### Motivating example: PID control

Include the rate of change of tracking error:

- \* The derivative term provides anticipation of future error ( "feedforward" )
- \* Three PID gains  $K, T_i, T_d$  need tuning, either using a system model or heuristic rules (e.g. Ziegler-Nichols)
- $\star$  PID tuning is difficult with nonlinear dynamics and constraints
- $\star\,$  Not obvious how to configure feedback loops for MIMO problems

### Controller optimization

Can we optimize controller parameters for a given performance criterion? e.g. mean square error:  $\min_{K,T_i,T_d} \int_0^\infty \mathbb{E}\{(T^0 - T)^2 + \rho u^2\} dt$ 



- $\star\,$  Optimization of linear controller gains (e.g.  $K, T_i, T_d)$  is generally nonconvex
- $\star$  It's more common to optimize over control signals (e.g. LQG control)  $\min_{u} \int_{0}^{\infty} \mathbb{E}\{(T^{0} T)^{2} + \rho \, u^{2}\} \, dt$

Unconstrained linear system  $\implies$  solution is linear state feedback but no closed-form solution in almost all other cases

### Model predictive control

MPC optimizes predicted performance numerically over future control and state trajectories



- The optimization is generally easier than optimizing feedback gains (e.g. convex for linear systems with linear state and input constraints)
- Single-shot solution is an open loop control signal MPC updates it by repeating the optimization periodically online
- This results in a feedback controller, providing robustness to model and measurement uncertainty and compensating for using finite numbers of optimization variables

### Model predictive control

- **1** Prediction using a dynamic model & constraints
- 2 Online optimization
- 3 Receding horizon implementation
- 1. Prediction
  - \* Plant model:  $x_{k+1} = f(x_k, u_k)$
  - $\star$  Simulate forward in time (over a prediction horizon of N steps)



Notation:  $(u_{i|k}, x_{i|k}) = {\rm predicted} \ i \ {\rm steps} \ {\rm ahead} \ | \ {\rm evaluated} \ {\rm at} \ {\rm time} \ k \\ x_{0|k} = x_k$ 

#### Overview of MPC

2. Optimization

$$\star$$
 Performance cost:  $J(x_k,\mathbf{u}_k)=\sum_{i=0}^N\,\ell_i(x_{i|k},u_{i|k})$  
$$\ell_i(x,u)\text{: stage cost}$$

\* Optimize numerically to determine the optimal input sequence:

$$\mathbf{u}_k^* = \arg\min_{\mathbf{u}_k} J(x_k, \mathbf{u}_k)$$
$$= \left( u_{0|k}^*(x_k), \dots, u_{N-1|k}^*(x_k) \right)$$

3. Implementation

 $\star$  Use first element of  $\mathbf{u}_k^*$   $\Longrightarrow$  MPC law:  $u_k = u_{0|k}^*(x_k)$ 

 $\star\,$  Repeat optimization at each sampling instant  $k=0,1,\ldots$ 

# Overview of MPC



### Overview of MPC



Plant model:

$$x_{k+1} = \begin{bmatrix} 1.1 & 2\\ 0 & 0.95 \end{bmatrix} x_k + \begin{bmatrix} 0\\ 0.0787 \end{bmatrix} u_k$$
$$y_k = \begin{bmatrix} -1 & 1 \end{bmatrix} x_k$$

Cost:

$$\sum_{i=0}^{N-1}(y_{i|k}^2+u_{i|k}^2)+y_{N|k}^2$$

 $\label{eq:prediction} {\sf Prediction \ horizon:} \quad N=3$ 

Predicted input and state sequences: 
$$\mathbf{u}_k = \begin{bmatrix} u_{0|k} \\ u_{1|k} \\ u_{2|k} \end{bmatrix}$$
,  $\mathbf{x}_k = \begin{bmatrix} x_{0|k} \\ x_{1|k} \\ x_{2|k} \\ x_{3|k} \end{bmatrix}$ 











# Model predictive control

#### Advantages

- ▷ Flexible plant model
  - multivariable
  - linear or nonlinear
  - deterministic, stochastic or fuzzy
- ▷ Handles constraints on control inputs and states
  - actuator limits
  - safety, environmental and economic constraints
- > Approximately optimal control

Disadvantages

- Requires online optimization
  - quadratic programming (QP) problem for linear-quadratic problems
  - high computational requirement for nonlinear systems

# MPC development

Control strategy reinvented several times

| LQG optimal control        | 1950's |
|----------------------------|--------|
| industrial process control | 1980's |
| constrained nonlinear MPC  | 1990's |
| robust MPC                 | 2000's |
| stochastic MPC             | 2010's |

Current research challenges:

- high sample rates, long prediction horizons, uncertain & nonlinear models
- embedded optimization & sparse solvers
- adaptive and stochastic MPC

#### Prediction model

Linear plant model:  $x_{k+1} = Ax_k + Bu_k$ 

 $\triangleright$  Predicted  $\mathbf{x}_k$  depends linearly on  $\mathbf{u}_k$ 

[details in Lecture 2]

Online optimization:

 $\min_{\mathbf{u}} \mathbf{u}^{\top} H \mathbf{u} + 2f^{\top} \mathbf{u} \quad \text{s.t.} \quad A_c \mathbf{u} \leq b_c$ This is a convex Quadratic Program (QP), which is reliably and efficiently solvable

#### Prediction model

Nonlinear plant model:  $x_{k+1} = f(x_k, u_k)$ 

- $\triangleright$  Predicted  $\mathbf{x}_k$  depends nonlinearly on  $\mathbf{u}_k$
- ▷ In general the cost is nonconvex in  $\mathbf{u}_k$ :  $J(x_k, \mathbf{u}_k)$ and the constraints are nonconvex:  $g_c(x_k, \mathbf{u}_k) \leq 0$

▷ Online optimization:

$$\min_{\mathbf{u}} \quad J(x_k, \mathbf{u}) \quad \text{s.t.} \quad g_c(x_k, \mathbf{u}) \le 0$$

- may be nonconvex
- may have local minima
- may not be solvable efficiently or reliably

Discrete time prediction model

- $\triangleright$  Predictions optimized periodically at t = 0, T, 2T, ...
- $\triangleright$  Usually  $T = T_s =$  sampling interval of model
- ▷ But  $T = nT_s$  for any integer  $n \ge 1$  is possible, (e.g. if  $T_s < \text{time needed}$  for online optimization)

Continuous time prediction model

- $\triangleright$  Predicted u(t) need not be piecewise constant,
  - e.g. continuous, piecewise linear u(t)

or u(t) = polynomial in t (piecewise quadratic, cubic etc)

- > Continuous time prediction models can be solved online
- $\triangleright$  This course: discrete-time model and  $T = T_s$  assumed

#### Constraints

Classify state and input constraints as either hard or soft

- Hard constraints must be satisfied at all times, if this is not possible, then the problem is infeasible
- > Soft constraints can be violated to avoid infeasibility
- ▷ Strategies for handling soft constraints:
  - $\star$  impose (hard) constraints on the probability of violating each soft constraint
  - $\star$  or remove active constraints until the problem becomes feasible

#### Constraints

Typical methods for handling input constraints:

- (a) Saturate the unconstrained control law (ignore constraints in controller design)
- (b) De-tune the unconstrained control law by increasing the penalty on u in the performance objective
- (c) Use an anti-windup strategy to limit the state of a dynamic controller (typically the integral term of a PI or PID controller)
- (d) Use MPC with inequality-constrained optimization

#### Example: input constraints

(a) Effects of controller saturation,  $u < u_k < \overline{u}$ 

unconstrained LQ optimal control:  $u^0(x) = K_{LQ}x$ 

saturated:  $u = \max\{\min\{u^0, \overline{u}\}, \underline{u}\}$ 



Input constraints:

 $u \leq u \leq \overline{u}$  $u = -1, \quad \overline{u} = 1$ 

Controller saturation causes

- \* poor performance
- ★ possible instability

### Example: input constraints

(b) Effects of de-tuning the unconstrained optimal control law:

$$K_{ ext{\tiny LQ}} = \mathsf{optimal} \; \mathsf{gain} \; \mathsf{for} \; \mathsf{LQ} \; \mathsf{cost} \; \sum_{k=0}^\infty \bigl( y_k^2 + 
ho \, u_k^2 \bigr) \; .$$

Increase  $\rho$  until  $u = K_{LQ}x$  satisfies constraints (locally)


## Example: input constraints

#### (c) Effects of Anti-windup:

Anti-windup attempts to avoid instability while control input saturated Many possible approaches, e.g. anti-windup PI controller:



#### Heuristic strategy may not prevent instability

## Example: input constraints

(d) Comparison with MPC (with prediction horizon N = 16)

Example

MPC vs saturated LQ (both using the same cost):

- ★ settling time reduced to 20
- $\star$  stability is guaranteed



## Summary

- Predict performance using plant model
  - e.g. linear or nonlinear, discrete or continuous time
- Optimize future (open loop) control sequence computationally much easier than optimizing over feedback laws
- Implement first sample, then repeat optimization provides feedback to reduce effect of uncertainty
- Comparison of common methods of handling constraints: saturation, de-tuning, anti-windup, MPC

Lecture 2

Prediction and optimization

## Prediction and optimization

- Input and state predictions
- Unconstrained finite horizon optimal control
- Infinite prediction horizons and connection with LQ optimal control
- Incorporating constraints
- Quadratic programming

# Review of MPC strategy

At each sampling instant:

- **1** Use a model to predict system behaviour over a finite future horizon
- **②** Compute a control sequence by solving an online optimization problem
- Apply the first element of optimal control sequence as control input



#### Advantages

- ★ flexible plant model
- $\star$  constraints taken into account
- $\star$  optimal performance

#### Disadvantage

 $\star\,$  online otimization required

Linear time-invariant model:

$$x_{k+1} = Ax_k + Bu_k$$
  
assume  $x_k$  is measured at time  $k$ 

Predictions: 
$$\mathbf{u}_k = \begin{bmatrix} u_{0|k} \\ \vdots \\ u_{N-1|k} \end{bmatrix}$$
,  $\mathbf{x}_k = \begin{bmatrix} x_{0|k} \\ \vdots \\ x_{N|k} \end{bmatrix}$ 

Quadratic cost:  $J(x_k, \mathbf{u}_k) = \sum_{i=0}^{N-1} (\|x_{i|k}\|_Q^2 + \|u_{i|k}\|_R^2) + \|x_{N|k}\|_P^2$  $(\|x\|_Q^2 = x^\top Qx, \|u\|_R^2 = u^\top Ru$ P = terminal weighting matrix)

Linear time-invariant model:  $x_{s+1} = A x_{s+1}$ 

riant model:  

$$\begin{aligned}
x_{i+1|k} &= Ax_{i|k} + Bu_{i|k} \\
&\text{assume } x_k \text{ is measured at time } k \\
x_{0|k} &= x_k \\
x_{1|k} &= Ax_k + Bu_{0|k} \\
&\vdots \\
x_{N|k} &= A^N x_k + A^{N-1} Bu_{0|k} + A^{N-2} Bu_{1|k} + \dots + Bu_{N-1|k} \\
&\downarrow 
\end{aligned}$$

$$\mathbf{x}_{k} = \mathcal{M}x_{k} + \mathcal{C}\mathbf{u}_{k},$$
$$\mathcal{M} = \begin{bmatrix} I \\ A \\ A^{2} \\ \vdots \\ A^{N} \end{bmatrix}, \quad \mathcal{C} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ B \\ AB & B \\ \vdots & \vdots & \ddots \\ A^{N-1}B & A^{N-2}B & \cdots & B \end{bmatrix}$$

Predicted cost:

$$J_{k} = \sum_{i=0}^{N-1} \left( \|x_{i|k}\|_{Q}^{2} + \|u_{i|k}\|_{R}^{2} \right) + \|x_{N|k}\|_{P}^{2}$$
$$= \mathbf{x}_{k}^{\top} \mathbf{Q} \mathbf{x}_{k} + \mathbf{u}_{k}^{\top} \mathbf{R} \mathbf{u}_{k} \qquad \left\{ \begin{array}{l} \mathbf{Q} = \operatorname{diag}\{Q, \dots, Q, P\} \\ \mathbf{R} = \operatorname{diag}\{R, \dots, R, R\} \end{array} \right\}$$

where

 $H = \mathcal{C}^{\top} \mathbf{Q} \,\mathcal{C} + \mathbf{R} \quad \leftarrow \quad \mathbf{u} \times \mathbf{u} \text{ terms}$  $F = \mathcal{C}^{\top} \mathbf{Q} \,\mathcal{M} \qquad \leftarrow \quad \mathbf{u} \times x \text{ terms}$  $G = \mathcal{M}^{\top} \mathbf{Q} \,\mathcal{M} \qquad \leftarrow \quad x \times x \text{ terms}$ 

time-invariant model  $\implies$  H, F, G can be computed offline

Predicted cost:

$$J_{k} = \sum_{i=0}^{N-1} \left( \|x_{i|k}\|_{Q}^{2} + \|u_{i|k}\|_{R}^{2} \right) + \|x_{N|k}\|_{P}^{2}$$
  
$$= \mathbf{x}_{k}^{\top} \mathbf{Q} \mathbf{x}_{k} + \mathbf{u}_{k}^{\top} \mathbf{R} \mathbf{u}_{k} \qquad \begin{cases} \mathbf{Q} = \operatorname{diag}\{Q, \dots, Q, P\} \\ \mathbf{R} = \operatorname{diag}\{R, \dots, R, R\} \end{cases}$$
  
$$\Downarrow$$
$$J_{k} = \mathbf{u}_{k}^{\top} H \mathbf{u}_{k} + 2x_{k}^{\top} F^{\top} \mathbf{u}_{k} + x_{k}^{\top} G x_{k}$$

where

$$H = \mathcal{C}^{\top} \mathbf{Q} \,\mathcal{C} + \mathbf{R} \quad \leftarrow \quad \mathbf{u} \times \mathbf{u} \text{ terms}$$
  

$$F = \mathcal{C}^{\top} \mathbf{Q} \,\mathcal{M} \qquad \leftarrow \quad \mathbf{u} \times x \text{ terms}$$
  

$$G = \mathcal{M}^{\top} \mathbf{Q} \,\mathcal{M} \qquad \leftarrow \quad x \times x \text{ terms}$$

time-invariant model  $\implies$  H, F, G can be computed offline

#### Prediction equations – example

Cost matrices  $Q = C^{\top}C$ , R = 0.01, and P = Q:

$$H = \begin{bmatrix} 0.271 & 0.122 & 0.016 & -0.034 \\ \star & 0.086 & 0.014 & -0.020 \\ \star & \star & 0.023 & -0.007 \\ \star & \star & \star & 0.016 \end{bmatrix} \qquad F = \begin{bmatrix} 0.977 & 4.925 \\ 0.383 & 2.174 \\ 0.016 & 0.219 \\ -0.115 & -0.618 \end{bmatrix}$$
$$G = \begin{bmatrix} 7.589 & 22.78 \\ \star & 103.7 \end{bmatrix}$$

## Prediction equations: LTV model

Linear time-varying model:  $x_{k+1} = A_k x_k + B_k u_k$  assume  $x_k$  is measured at time k

Predictions:

$$\begin{aligned} x_{0|k} &= x_k \\ x_{1|k} &= A_k x_k + B_k u_{0|k} \\ x_{2|k} &= A_{k+1} A_k x_k + A_{k+1} B_k u_{0|k} + B_{k+1} u_{1|k} \\ &\vdots \\ x_{i|k} &= \prod_{j=i-1}^0 A_{k+j} x_k + \mathcal{C}_i(k) \mathbf{u}_k, \qquad i = 0, \dots, N \\ \mathcal{C}_i(k) &= \left[ \prod_{j=i-1}^1 A_{k+j} B_k \prod_{j=i-1}^2 A_{k+j} B_{k+1} \cdots B_{k+i-1} \quad 0 \quad \cdots \quad 0 \right] \end{aligned}$$

\* 
$$\prod_{j=i-1}^{0} A_{k+j} = A_{k+i-1} \cdots A_k$$
 for  $i \ge 1$  and  $\prod_{j=i-1}^{0} A_{k+j} = 0$  for  $i = 0$   
\*  $H(k)$ ,  $F(k)$ ,  $G(k)$  depend on  $k$  and must be computed online

## Unconstrained optimization

Here 
$$H = \mathcal{C}^{\top} \mathbf{Q} \mathcal{C} + \mathbf{R} \succ 0$$
 if: 
$$\begin{cases} R \succ 0 \& Q, P \succeq 0 \text{ or} \\ R \succeq 0 \& Q, P \succ 0 \& \mathcal{C} \text{ is full-rank} \\ (A, B) \text{ controllable} \end{cases}$$

Receding horizon controller is linear state feedback:

$$u_k = -\begin{bmatrix} I & 0 & \cdots & 0 \end{bmatrix} H^{-1} F x_k$$

is the closed loop response optimal? is it even stable?

## Unconstrained optimization

 $\begin{array}{ll} \text{Minimize cost:} & \mathbf{u}^* = \arg\min_{\mathbf{u}} J, \quad J = \mathbf{u}^\top H \mathbf{u} + 2x^\top F^\top \mathbf{u} + x^\top G x \\ \text{differentiate w.r.t. } \mathbf{u}: & \nabla_{\mathbf{u}} J = 2H \mathbf{u} + 2F x = 0 \\ & \Downarrow \\ & \mathbf{u} = -H^{-1}F x \\ & = \mathbf{u}^* \quad \text{if } H \text{ is positive definite } \text{ i.e. if } H \succ 0 \\ \end{array}$ 

Here 
$$H = \mathcal{C}^{\top} \mathbf{Q} \mathcal{C} + \mathbf{R} \succ 0$$
 if: 
$$\begin{cases} R \succ 0 \& Q, P \succeq 0 \text{ or} \\ R \succeq 0 \& Q, P \succ 0 \& \mathcal{C} \text{ is full-rank} \\ (A, B) \text{ controllable} \end{cases}$$

Receding horizon controller is linear state feedback:

$$u_k = -\begin{bmatrix} I & 0 & \cdots & 0 \end{bmatrix} H^{-1} F x_k$$

is the closed loop response optimal? is it even stable?

Model: 
$$A, B, C$$
 as before, cost:  $J_k = \sum_{i=0}^{N-1} (y_{i|k}^2 + 0.01u_{i|k}^2) + y_{N|k}^2$   
For  $N = 4$ :  $\mathbf{u}_k^* = -H^{-1}Fx_k = \begin{bmatrix} -4.36 & -18.7\\ 1.64 & 1.24\\ 1.41 & 3.00\\ 0.59 & 1.83 \end{bmatrix} x_k$   
 $u_k = \begin{bmatrix} -4.36 & -18.7 \end{bmatrix} x_k$ 

▶ For general N:  $u_k = L(N)x_k$ 

|                                    | N = 4 | N = 3                                                                                                               | N=2                                                                             | N = 1                                                                        |
|------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| $\frac{L(N)}{\lambda (A + BL(N))}$ |       | $ \begin{bmatrix} -3.80 & -16.98 \end{bmatrix} \\ \begin{array}{c} 0.36 \pm 0.22j \\ \text{stable} \\ \end{array} $ | $\begin{bmatrix} 1.22 & -3.95 \\ 1.36, 0.38 \\ \textbf{unstable} \end{bmatrix}$ | $\begin{bmatrix} 5.35 & 5.10 \\ 2.15, 0.30 \\ \text{unstable} \end{bmatrix}$ |



Horizon: N = 4,  $x_0 = (0.5, -0.5)$ 



Horizon: N = 3,  $x_0 = (0.5, -0.5)$ 



Horizon: N = 2,  $x_0 = (0.5, -0.5)$ 



Observation: big differences exist between predicted and closed loop responses for small N

## Receding horizon control

Why is this example unstable for  $N \le 2$ ? System is non-minimum phase  $\downarrow$ impulse response changes sign  $\downarrow$ therefore short horizon causes instability  $\downarrow$ 

8

10

Solution:

- ★ use an infinite horizon cost
- $\star\,$  but keep a finite number of optimization variables in predictions

## Dual mode predictions

An infinite prediction horizon is possible with dual mode predictions:

$$u_{i|k} = \begin{cases} \text{optimization variables} & i = 0, \dots, N-1, \mod 1\\ Kx_{i|k} & i = N, N+1, \dots \mod 2 \end{cases}$$



Feedback gain K: stabilizing and determined offline

e.g. unconstrained LQ optimal for  $\sum_{i=0}^{\infty} (\|x_i\|_Q^2 + \|u_i\|_R^2)$ 

If the predicted input sequence is

$$\{u_{0|k},\ldots,u_{N-1|k},Kx_{N|k},K\Phi x_{N|k},\ldots\}$$

then

$$\sum_{i=0}^{\infty} \left( \|x_{i|k}\|_Q^2 + \|u_{i|k}\|_R^2 \right) = \sum_{i=0}^{N-1} \left( \|x_{i|k}\|_Q^2 + \|u_{i|k}\|_R^2 \right) + \|x_{N|k}\|_P^2$$

where

$$P - (A + BK)^{\top} P(A + BK) = Q + K^{\top} RK$$

Lyapunov matrix equation (discrete time)

 $\star$  If  $Q + K^{\top}RK \succ 0$ , then the solution P is unique and  $P \succ 0$ 

\* Matlab: P = dlyap(Phi',RHS);

Phi = A+B\*K; RHS = Q+K'\*R\*K;

 $\star~P$  is equal to the steady state Riccati equation solution if K is LQ optimal

If the predicted input sequence is

$$\{u_{0|k},\ldots,u_{N-1|k},Kx_{N|k},K\Phi x_{N|k},\ldots\}$$

then

$$\sum_{i=0}^{\infty} \left( \|x_{i|k}\|_Q^2 + \|u_{i|k}\|_R^2 \right) = \sum_{i=0}^{N-1} \left( \|x_{i|k}\|_Q^2 + \|u_{i|k}\|_R^2 \right) + \|x_{N|k}\|_P^2$$

where

$$P - (A + BK)^{\top} P(A + BK) = Q + K^{\top} RK$$
  
Lyapunov matrix equation (discrete time)

 $\star\,$  If  $Q+K^{\top}RK\succ0,$  then the solution P is unique and  $P\succ0$ 

\* Matlab: P = dlyap(Phi', RHS); Phi = A+B\*K; RHS = Q+K'\*R\*K;

 $\star~P$  is equal to the steady state Riccati equation solution if K is LQ optimal

Proof that the predicted cost over the mode 2 horizon is  $||x_{N|k}||_P^2$ :

Let 
$$J^{\infty}(\boldsymbol{x}) = \sum_{i=0}^{\infty} (\|x_i\|_Q^2 + \|u_i\|_R^2)$$
, with  $u_i = Kx_i$ ,  $x_{i+1} = \Phi x_i \ \forall i$   
 $x_0 = \boldsymbol{x}$   
 $-$  then  $J^{\infty}(\boldsymbol{x}) = \sum_{i=0}^{\infty} (\boldsymbol{x}^{\top} \Phi^{i^{\top}} Q \Phi^{i} \boldsymbol{x} + \boldsymbol{x}^{\top} K^{\top} \Phi^{i^{\top}} R K \Phi^{i} \boldsymbol{x})$   
 $= \boldsymbol{x}^{\top} \left[ \sum_{i=0}^{\infty} (\Phi^{i})^{\top} (Q + K^{\top} R K) \Phi^{i} \right] \boldsymbol{x} = \|\boldsymbol{x}\|_P^2$   
 $= P$   
 $-$  but  $\Phi^{\top} P \Phi = \sum_{i=1}^{\infty} (\Phi^{i})^{\top} (Q + K^{\top} R K) \Phi^{i}$   
 $= P - (Q + K^{\top} R K)$   
so  $P - \Phi^{\top} P \Phi = Q + K^{\top} R K$ 

Proof that the predicted cost over the mode 2 horizon is  $||x_{N|k}||_P^2$ :

Let 
$$J^{\infty}(\boldsymbol{x}) = \sum_{i=0}^{\infty} (\|x_i\|_Q^2 + \|u_i\|_R^2)$$
, with  $u_i = Kx_i, x_{i+1} = \Phi x_i \quad \forall i$   
 $x_0 = \boldsymbol{x}$   
- then  $J^{\infty}(x) = \sum_{i=0}^{\infty} (x^{\top} \Phi^{i^{\top}} Q \Phi^i x + x^{\top} K^{\top} \Phi^{i^{\top}} R K \Phi^i x)$   
 $= x^{\top} \left[ \sum_{i=0}^{\infty} (\Phi^i)^{\top} (Q + K^{\top} R K) \Phi^i \right] x = \|x\|_P^2$   
- but  $\Phi^{\top} P \Phi = \sum_{i=1}^{\infty} (\Phi^i)^{\top} (Q + K^{\top} R K) \Phi^i$   
 $= P - (Q + K^{\top} R K)$   
so  $P - \Phi^{\top} P \Phi = Q + K^{\top} R K$ 

## Connection with LQ optimal control

Let 
$$J(x_k, \mathbf{u}_k) = \sum_{i=0}^{N-1} \left( \|x_{i|k}\|_Q^2 + \|u_{i|k}\|_R^2 \right) + \|x_{N|k}\|_P^2$$
$$P - (A + BK)^\top P(A + BK) = Q + K^\top RK, \quad K = \mathsf{LQ} \text{ optimal}$$

Then the solution of the unconstrained optimization satisfies

$$u_{0|k}^* = K x_k$$
 where  $\mathbf{u}_k^* = \arg \min_{\mathbf{u}} J(x_k, \mathbf{u}) = (u_{0|k}^*, \dots, u_{N-1|k}^*)$ 

since

$$\{u_{0|k}, u_{1,k}, \ldots\} \text{ is optimal iff } \begin{cases} \mathbf{u}_k = \{u_{0|k}, \ldots, u_{N-1|k}\} \text{ is optimal} \\ \text{and } \{u_{N|k}, u_{N+1|k}, \ldots\} \text{ is optimal} \end{cases}$$

#### Connection with LQ optimal control – example

► Model parameters (A, B, C) as before LQ optimal gain for  $Q = C^{\top}C$ , R = 0.01:  $K = \begin{bmatrix} -4.36 & -18.74 \end{bmatrix}$ Lyapunov equation solution:  $P = \begin{bmatrix} 3.92 & 4.83 \\ 13.86 \end{bmatrix}$ 

• Cost matrices for N = 4:

$$H = \begin{bmatrix} 1.44 & 0.98 & 0.59 & 0.26 \\ \star & 0.72 & 0.44 & 0.20 \\ \star & \star & 0.30 & 0.14 \\ \star & \star & \star & 0.096 \end{bmatrix} \quad F = \begin{bmatrix} 3.67 & 23.9 \\ 2.37 & 16.2 \\ 1.36 & 9.50 \\ 0.556 & 4.18 \end{bmatrix} \quad G = \begin{bmatrix} 13.8 & 66.7 \\ \star & 413 \end{bmatrix}$$

► Predictive control law:  $u_k = -\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} H^{-1} F x_k$ =  $\begin{bmatrix} -4.35 & -18.74 \end{bmatrix} x_k$ 

## Connection with LQ optimal control - example

• Response for N = 4,  $x_0 = (0.5, -0.5)$ 



Infinite horizon cost no constraints

 $\Rightarrow$  identical predicted and closed loop responses

## Dual mode predictions

Pre-stabilize predictions to provide better numerical stability:

▷ Control inputs

#### $\triangleright$ States

mode 1 
$$x_{i+1|k} = \Phi x_{i|k} + Bc_{i|k}, \quad i = 0, 1, \dots, N-1$$
  
mode 2  $x_{i+1|k} = \Phi x_{i|k}, \quad i = N, N+1, \dots$ 

where  $(c_{0|k}, \ldots, c_{N-1|k})$  are optimization variables

## Dual mode predictions

Pre-stabilize predictions to provide better numerical stability:

 $\triangleright \text{ Vectorized form:} \qquad \mathbf{x}_{k} = \mathcal{M}x_{k} + \mathcal{C}\mathbf{c}_{k}$  $\mathbf{x}_{k} := \begin{bmatrix} x_{0|k} \\ \vdots \\ x_{N|k} \end{bmatrix}, \quad \mathbf{c}_{k} := \begin{bmatrix} c_{0|k} \\ \vdots \\ c_{N-1|k} \end{bmatrix}$  $\mathcal{M} = \begin{bmatrix} I \\ \Phi^{2} \\ \vdots \\ \Phi^{N} \end{bmatrix}, \quad \mathcal{C} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ B & B \\ \vdots & \vdots & \ddots \\ \Phi^{N-1}B & \Phi^{N-2}B & \cdots & B \end{bmatrix}$ 

 $\triangleright \text{ Cost: } J(x_k, (u_{0|k}, \dots, u_{N-1|k})) = \mathcal{J}(x_k, \mathbf{c}_k)$ 

#### Input and state constraints

Infinite horizon unconstrained MPC = LQ optimal control

but MPC can also handle constraints

Consider constraints applied to mode 1 predictions:

 $\star$  input constraints:  $\underline{u} \leq u_{i|k} \leq \overline{u}, \quad i = 0, \dots, N-1$ 

$$\iff \begin{bmatrix} I \\ -I \end{bmatrix} \mathbf{u}_k \leq \begin{bmatrix} \overline{\mathbf{u}} \\ -\underline{\mathbf{u}} \end{bmatrix} \qquad \text{where} \qquad \begin{bmatrix} \overline{\mathbf{u}}^\top & \cdots & \overline{\mathbf{u}}^\top \end{bmatrix}^\top \\ \mathbf{\underline{u}} = \begin{bmatrix} \underline{u}^\top & \cdots & \underline{u}^\top \end{bmatrix}^\top$$

 $\star$  state constraints:  $\underline{x} \leq x_{i|k} \leq \overline{x}, \quad i=1,\ldots,N$ 

$$\iff \begin{bmatrix} \mathcal{C}_i \\ -\mathcal{C}_i \end{bmatrix} \mathbf{u}_k \le \begin{bmatrix} \overline{x} \\ -\underline{x} \end{bmatrix} + \begin{bmatrix} -A^i \\ A^i \end{bmatrix} x_k, \quad i = 1, \dots, N$$

#### Input and state constraints

Constraints on mode 1 predictions can be expressed

 $A_c \mathbf{u}_k \le b_c + B_c x_k$ 

where  $A_c, B_c, b_c$  can be computed offline since model is time-invariant

The online optimization is a quadratic program (QP):

 $\begin{array}{ll} \underset{\mathbf{u}}{\text{minimize}} & \mathbf{u}^{\top} H \mathbf{u} + 2x_k^{\top} F^{\top} \mathbf{u} \\ \text{subject to} & A_c \mathbf{u} \leq b_c + B_c x_k \end{array}$ 

which is a convex optimization problem with a unique solution if  $\mathbf{x} = \mathbf{x}^\top \mathbf{x} \mathbf{z}$ 

 $H = \mathcal{C}^{\top} \mathbf{Q} \mathcal{C} + \mathbf{R}$  is positive definite

# QP solvers: (a) Active set

Consider the QP:  $\mathbf{u}^* = \arg \min_{\mathbf{u}} \quad \mathbf{u}^\top H \mathbf{u} + 2f^\top \mathbf{u}$ subject to  $A\mathbf{u} \le b$ and let  $(A_i, b_i) = i$ th row/element of (A, b)

▷ Individual constraints are active or inactive

| active                                                | inactive                                                    |  |
|-------------------------------------------------------|-------------------------------------------------------------|--|
| $A_i \mathbf{u}^* = b_i, \ \forall i \in \mathcal{I}$ | $A_i \mathbf{u}^* \leq b_i, \ \forall i  ot\in \mathcal{I}$ |  |
| $b_i$ affects solution                                | $b_i$ does not affect solution                              |  |

 $\triangleright$  Solve QP by searching for  $\mathcal{I}$ 

- one equality constraint problem solved at each iteration
- \* optimality conditions (KKT conditions) identify solution

# QP solvers: (a) Active set

Consider the QP:  $\mathbf{u}^* = \arg \min_{\mathbf{u}} \quad \mathbf{u}^\top H \mathbf{u} + 2f^\top \mathbf{u}$ subject to  $A\mathbf{u} \le b$ and let  $(A_i, b_i) = i$ th row/element of (A, b)

▷ Individual constraints are active or inactive

| active                                                | inactive                                                   |
|-------------------------------------------------------|------------------------------------------------------------|
| $A_i \mathbf{u}^* = b_i, \ \forall i \in \mathcal{I}$ | $A_i \mathbf{u}^* \le b_i, \ \forall i \notin \mathcal{I}$ |
| $b_i$ affects solution                                | $b_i$ does not affect solution                             |

$$\mathsf{Equality \ constraint \ problem: \ } \mathbf{u}^* = \arg\min_{\mathbf{u}} \quad \mathbf{u}^\top H \mathbf{u} + 2f^\top \mathbf{u}$$
  
subject to  $A_i \mathbf{u} = b_i, \ \forall i \in \mathcal{I}$ 

 $\triangleright$  Solve QP by searching for  $\mathcal{I}$ 

- $\star\,$  one equality constraint problem solved at each iteration
- \* optimality conditions (KKT conditions) identify solution

#### Active constraints – example



A QP problem with 5 inequality constraints active set at solution:  $\mathcal{I}=\{2\}$ 

## Active constraints – example



An equivalent equality constraint problem
# QP solvers: (a) Active set

▷ Computation:

 $O(N^3 n_u^3)$  additions/multiplications per iteration (conservative estimate) upper bound on number of iterations is exponential in problem size

> At each iteration choose trial active set using: cost gradient

Lagrange multipliers (constraint sensitivities)

The number of iterations needed is often small in practice

 $\triangleright$  In MPC  $\mathbf{u}_k^* = \mathbf{u}^*(x_k)$  and  $\mathcal{I}_k = \mathcal{I}(x_k)$ 

hence initialize solver at time k using the solution computed at k-1

# QP solvers: (b) Interior point

▷ Solve an unconstrained problem at each iteration:

$$\mathbf{u}(\mu) = \min_{\mathbf{u}} \mu \left( \mathbf{u}^{\top} H \mathbf{u} + 2f^{\top} \mathbf{u} \right) + \phi(\mathbf{u})$$

where

$$\begin{split} \phi(\mathbf{u}) &= \text{barrier function} \quad (\phi \to \infty \text{ at constraints}) \\ \mathbf{u} \to \mathbf{u}^* \text{ as } \mu \to \infty \end{split}$$

Increase  $\mu$  until  $\phi(\mathbf{u}^*) > 1/\epsilon$  ( $\epsilon$  = user-defined tolerance)

▷ # arithmetic operations per iteration is constant, e.g.  $O(N^3 n_u^3)$ # iterations for given  $\epsilon$  is polynomial in problem size

Computational advantages for large-scale problems e.g. # variables  $> 10^2$ , # constraints  $> 10^3$ 

No general method for initializing at solution estimate

# QP solvers: (b) Interior point

▷ Solve an unconstrained problem at each iteration:

$$\mathbf{u}(\mu) = \min_{\mathbf{u}} \mu \left( \mathbf{u}^{\top} H \mathbf{u} + 2f^{\top} \mathbf{u} \right) + \phi(\mathbf{u})$$

where

$$\begin{split} \phi(\mathbf{u}) &= \text{barrier function} \quad (\phi \to \infty \text{ at constraints}) \\ \mathbf{u} \to \mathbf{u}^* \text{ as } \mu \to \infty \end{split}$$

Increase  $\mu$  until  $\phi(\mathbf{u}^*) > 1/\epsilon$  ( $\epsilon$  = user-defined tolerance)

 $\triangleright$  # arithmetic operations per iteration is constant, e.g.  $O(N^3 n_u^3)$ # iterations for given  $\epsilon$  is polynomial in problem size

Computational advantages for large-scale problems e.g. # variables >  $10^2$ , # constraints >  $10^3$ 

▷ No general method for initializing at solution estimate

#### Interior point method – example



but  $\min_{\mathbf{u}} \mu \left( \mathbf{u}^\top H \mathbf{u} + 2f^\top \mathbf{u} \right) + \phi(\mathbf{u})$  becomes ill-conditioned as  $\mu \to \infty$ 

# QP solvers: (c) Multiparametric

Let 
$$\mathbf{u}^*(\boldsymbol{x}) = \arg\min_{\mathbf{u}} \quad \mathbf{u}^\top H \mathbf{u} + 2\boldsymbol{x}^\top F^\top \mathbf{u}$$
  
subject to  $A\mathbf{u} \le b + B\boldsymbol{x}$ 

then:

- $\star~\mathbf{u}^*$  is a continous function of x
- \*  $\mathbf{u}^*(x) = K_j x + k_j$  for all x in a polytopic set  $\mathcal{X}_j$
- $\triangleright$  In principle each  $K_j, k_j$  and  $\mathcal{X}_j$  can be determined offline
- ▷ Large number of sets  $X_j$  (combinatorial in problem size) so online determination of j such that  $x_k \in X_j$  is difficult

### Multiparametric QP – example



constraints:  $-1 \le u \le 1$ ,  $-1 \le x/8 \le 1$ 

# Summary

$$\label{eq:control_inputs:} \begin{split} \mathbf{p} \mbox{ Predicted control inputs: } \mathbf{u}_k &= \begin{bmatrix} u_{0|k} \\ \vdots \\ u_{N-1|k} \end{bmatrix} \\ & \mbox{ and states: } \mathbf{x}_k = \begin{bmatrix} x_{1|k} \\ \vdots \\ x_{N|k} \end{bmatrix} = \mathcal{M} x_k + \mathcal{C} \mathbf{u}_k \end{split}$$

$$\mathsf{Predicted \ cost:} \ J(x_k, \mathbf{u}_k) = \sum_{i=0}^{N-1} (\|x_{i|k}\|_Q^2 + \|u_{i|k}\|_R^2) + \|x_{N|k}\|_P^2$$
$$= \mathbf{u}_k^\top H \mathbf{u}_k + 2x_k^\top F^\top \mathbf{u}_k + x_k^\top G x_k$$

> Online optimization subject to linear state and input constraints is a QP:

$$\begin{array}{ll} \underset{\mathbf{u}}{\text{minimize}} & \mathbf{u}^{\top} H \mathbf{u} + 2x_k^{\top} F^{\top} \mathbf{u} \\ \text{subject to} & A_c \mathbf{u} \leq b_c + B_c x_k \end{array}$$

Lecture 3

Closed loop properties of MPC

# Closed loop properties of MPC

- Review: infinite horizon cost
- Infinite horizon predictive control with constraints
- Closed loop stability
- Constraint-checking horizon
- Connection with constrained optimal control

### Review: infinite horizon cost

Short prediction horizons cause poor performance and instability, so

$$\star$$
 use an infinite horizon cost:  $J(x_k, \mathbf{u}_k) = \sum_{i=0}^{\infty} \left( \|x_{i|k}\|_Q^2 + \|u_{i|k}\|_R^2 \right)$ 

 $\star$  keep optimization finite-dimensional by using dual mode predictions:

$$u_{i|k} = \begin{cases} \text{optimization variables} & i = 0, \dots, N-1, \mod 1\\ Kx_{i|k} & i = N, N+1, \dots \mod 2 \end{cases}$$
  
mode 1: 
$$\mathbf{u}_k = \begin{bmatrix} u_{0|k} \\ \vdots \\ u_{N-1|k} \end{bmatrix} \qquad \mathbf{u}_k \text{ optimized online}$$
  
mode 2: 
$$u_{i|k} = Kx_{i|k} \qquad K \text{ chosen offline}$$

### Review: infinite horizon cost

$$\triangleright \text{ Cost for mode 2: } \sum_{i=N}^{\infty} \left( \|x_{i|k}\|_Q^2 + \|u_{i|k}\|_R^2 \right) = \|x_{N|k}\|_P^2$$

 $\boldsymbol{P}$  is the solution of the Lyapunov equation

$$P - (A + BK)^{\top} P(A + BK) = Q + K^{\top} RK$$

▷ Infinite horizon cost:

$$J(x_k, \mathbf{u}_k) = \sum_{i=0}^{N-1} \left( \|x_{i|k}\|_Q^2 + \|u_{i|k}\|_R^2 \right) + \|x_{N|k}\|_P^2$$
$$= \mathbf{u}_k^\top H \mathbf{u}_k + 2x_k^\top F^\top \mathbf{u}_k + x_k^\top G x_k$$

#### Review: MPC online optimization

 $\triangleright$  Unconstrained optimization:  $\nabla_{\mathbf{u}} J(x, \mathbf{u}^*) = 2H\mathbf{u}^* + 2Fx = 0$ , so

$$\mathbf{u}^*(x) = -H^{-1}Fx$$

 $\implies$  linear controller:  $u_k = K_{MPC} x_k$ 

 $K_{\text{MPC}} = \text{LQ-optimal}$  if K = LQ-optimal (in mode 2)

Constrained optimization:

$$\mathbf{u}^*(x) = \underset{\mathbf{u}}{\operatorname{arg\,min}} \qquad \mathbf{u}^\top H \mathbf{u} + 2x^\top F^\top \mathbf{u}$$
  
subject to  $A_c \mathbf{u} \le b_c + B_c x$ 

 $\implies$  nonlinear controller:  $u_k = K_{MPC}(x_k)$ 

$$\triangleright \text{ Plant model:} \quad x_{k+1} = Ax_k + Bu_k, \quad y_k = Cx_k$$
$$A = \begin{bmatrix} 1.1 & 2\\ 0 & 0.95 \end{bmatrix}, \quad B = \begin{bmatrix} 0\\ 0.0787 \end{bmatrix}, \quad C = \begin{bmatrix} -1 & 1 \end{bmatrix}$$

Constraints:  $-1 \le u_k \le 1$ 

▷ MPC optimization (constraints applied only to mode 1 predictions):

$$\begin{array}{ll} \underset{\mathbf{u}}{\text{minimize}} & \sum_{i=0}^{N-1} \left( \|x_{i|k}\|_{Q}^{2} + \|u_{i|k}\|_{R}^{2} \right) + \|x_{N|k}\|_{P}^{2} \\ \text{subject to} & -1 \leq u_{i|k} \leq 1, \quad i = 0, \dots, N-1 \\ & Q = C^{\top}C, \ R = 0.01, \ N = 2 \end{array}$$

... performance? stability?

Closed loop response for  $x_0 = (0.8, -0.8)$ 



Closed loop response for  $x_0 = (0.5, -0.5)$ 



Optimal predicted cost  $x_0 = (0.5, -0.5)$ 



 $\ldots$  increasing  $J_k \implies$  closed loop response does not follow predicted trajectory

# Stability analysis

How can we guarantee the closed loop stability of MPC?

(a). Show that a Lyapunov function exists demonstrating stability

). Ensure that optimization feasible is at each time  $k=0,1,\ldots$ 

#### ▷ For Lyapunov stability analysis:

- $\star\,$  consider first the unconstrained problem
- $\star\,$  use predicted cost as a trial Lyapunov function

Guarantee feasibility of the MPC optimization recursively by ensuring that feasibility at time k models feasibility at k + 1

# Stability analysis

How can we guarantee the closed loop stability of MPC?

(a). Show that a Lyapunov function exists demonstrating stability (b). Ensure that optimization feasible is at each time k = 0, 1, ...

- ▷ For Lyapunov stability analysis:
  - $\star$  consider first the unconstrained problem
  - $\star\,$  use predicted cost as a trial Lyapunov function
- $\triangleright$  Guarantee feasibility of the MPC optimization recursively by ensuring that feasibility at time k implies feasibility at k+1

## Discrete time Lyapunov stability

Consider the system  $x_{k+1} = f(x_k)$ , with f(0) = 0

 $\triangleright$  Definition: x = 0 is a stable equilibrium point if  $\max_k \|x_k\|$  can be made arbitrarily small by making  $x_0$  sufficiently small

 $\triangleright$  If continuously differentiable V(x) exists with

(i). V(x) is positive definite and (ii).  $V(x_{k+1}) - V(x_k) \le 0$ 

then x = 0 is a stable equilibrium point

## Discrete time Lyapunov stability

Consider the system  $x_{k+1} = f(x_k)$ , with f(0) = 0

 $\triangleright$  Definition: x = 0 is a stable equilibrium point if

 $\begin{array}{l} \text{for all } R > 0 \text{ there exists } r \text{ such that} \\ \|x_0\| < r \implies \|x_k\| < R \text{ for all } k \end{array}$ 

 $\triangleright$  If continuously differentiable V(x) exists with

(i). V(x) is positive definite and (ii).  $V(x_{k+1}) - V(x_k) \le 0$ 

then x = 0 is a stable equilibrium point

### Discrete time Lyapunov stability

Consider the system  $x_{k+1} = f(x_k)$ , with f(0) = 0

 $\triangleright$  Definition: x = 0 is an asymptotically stable equilibrium point if

(i). x = 0 is stable and (ii). r exists such that  $||x_0|| < r \implies \lim_{k \to \infty} x_k = 0$ 

 $\triangleright$  If continuously differentiable V(x) exists with

(i). V(x) is positive definite and (ii).  $V(x_{k+1}) - V(x_k) < 0$  whenever  $x_k \neq 0$ 

then x = 0 is an asymptotically stable equilibrium point

Trial Lyapunov function:

$$J^*(x_k) = J(x_k, \mathbf{u}_k^*)$$

where  $J(x_k, \mathbf{u}_k) = \sum_{i=0}^{\infty} (||x_{i|k}||_Q^2 + ||u_{i|k}||_R^2)$ 

 $\star~J^*(x)$  is positive definite if:

(a). 
$$R \succeq 0$$
 and  $Q \succ 0$ , or  
(b).  $R \succ 0$  and  $Q \succeq 0$  and  $(A, Q^{1/2})$  is observable

since then  $J^*(x_k) \ge 0$  and  $J^*(x_k) = 0$  if and only if  $x_k = 0$ 

#### $\star \ J^*(x)$ is continuously differentiable

... from analysis of MPC optimization as a multiparametric QP

Construct a bound on  $J^{\ast}(x_{k+1})-J^{\ast}(x_k)$  using the "tail" of the optimal prediction at time k

Optimal predicted sequences at time k:



Construct a bound on  $J^{\ast}(x_{k+1})-J^{\ast}(x_k)$  using the "tail" of the optimal prediction at time k



Construct a bound on  $J^{\ast}(x_{k+1})-J^{\ast}(x_k)$  using the "tail" of the optimal prediction at time k

Tail sequences at time k + 1:  $\tilde{\mathbf{u}}_{k+1} = \begin{vmatrix} u_{1|k} \\ \vdots \\ u_{N-1|k}^{*} \\ Kx_{N|k}^{*} \\ K\Phi x_{N|k}^{*} \\ \vdots \end{vmatrix} \quad \tilde{\mathbf{x}}_{k+1} = \begin{vmatrix} x_{1|k} \\ \vdots \\ \vdots \\ x_{N|k}^{*} \\ \Phi^{*} x_{N|k}^{*} \\ \Phi^{2} x_{N|k}^{*} \\ \vdots \end{vmatrix}$ N-1Ν optimal at k $(\Phi = A + BK)$ optimal at k:  $J^*(x_k) = J(x_k, \mathbf{u}_k^*)$ tail at k+1:  $\tilde{J}(x_{k+1}) = J(x_{k+1}, \tilde{\mathbf{u}}_{k+1})$   $= \sum_{i=0}^{\infty} \left( \|x_{i|k}^*\|_Q^2 + \|u_{i|k}^*\|_R^2 \right)$ 

Construct a bound on  $J^{\ast}(x_{k+1})-J^{\ast}(x_k)$  using the "tail" of the optimal prediction at time k

Predicted cost for the tail:

$$\tilde{J}(x_{k+1}) = J^*(x_k) - \|x_k\|_Q^2 - \|u_k\|_R^2$$

but  $\tilde{\mathbf{u}}_{k+1}$  is suboptimal at time k+1, so

$$J^*(x_{k+1}) \le \tilde{J}(x_{k+1})$$

Therefore

$$J^*(x_{k+1}) \le J^*(x_k) - \|x_k\|_Q^2 - \|u_k\|_R^2$$

The bound  $J^*(x_{k+1}) - J^*(x_k) \le - \|x_k\|_Q^2 - \|u_k\|_R^2$  implies:

(i). the closed loop cost cannot exceed the initial predicted cost, since summing both sides over all  $k\geq 0$  gives

$$\sum_{k=0}^{\infty} \left( \|x_k\|_Q^2 + \|u_k\|_R^2 \right) \le J^*(x_0)$$

- (ii). x = 0 is asymptotically stable
  - $\star\,$  if  $R\succeq 0$  and  $Q\succ 0,$  this follows from Lyapunov's direct method
  - $\star~$  if  $R \succ 0,~ Q \succeq 0$  and  $(A,Q^{1/2})$  observable, this follows from:

(a). stability of 
$$x = 0$$
  $\Leftarrow$  Lyapunov's direct method  
(b).  $\lim_{k \to \infty} (\|x_k\|_Q^2 + \|u_k\|_R^2) = 0 \ \Leftarrow \sum_{k=0}^{\infty} (\|x_k\|_Q^2 + \|u_k\|_R^2) < \infty$ 

# Stability analysis

How can we guarantee the closed loop stability of MPC?

(a). Show that a Lyapunov function exists demonstrating stability (b). Ensure that optimization feasible is at each time k = 0, 1, ...

- ▷ For Lyapunov stability analysis:
  - $\star$  consider first the unconstrained problem
  - $\star\,$  use predicted cost as a trial Lyapunov function
- $\vartriangleright$  Guarantee feasibility of the MPC optimization recursively by ensuring that feasibility at time  $k\implies$  feasibility at k+1

# Stability analysis

How can we guarantee the closed loop stability of MPC?

(a) Show that a Lyapunov function exists demonstrating stability (b). Ensure that optimization feasible is at each time k = 0, 1, ...

▷ For Lyapunov stability analysis:

- \* consider first the unconstrained problem
- \* use predicted cost as a trial Lyapunov function

 $\triangleright$  Guarantee feasibility of the MPC optimization recursively by ensuring that feasibility at time  $k \implies$  feasibility at k+1

# Terminal constraint

#### The basic idea



stabilizing linear controller satisfies constraints

### Terminal constraint



then  $\Omega$  is invariant for the mode 2 dynamics and constraints, so

$$x_{N|k} \in \Omega \implies \begin{cases} \underline{u} \le u_{i|k} \le \overline{u} \\ \underline{x} \le x_{i|k} \le \overline{x} \end{cases} \text{ for } i = N, N+1, \dots$$

i.e. constraints are satisfied over the infinite mode 2 prediction horizon

# Stability of constrained MPC

Prototype MPC algorithm At each time k = 0, 1, ...(i). solve  $\mathbf{u}_k^* = \arg\min_{\mathbf{u}_k} J(x_k, \mathbf{u}_k)$ s.t.  $\underline{u} \le u_{i|k} \le \overline{u}, \ i = 0, ..., N - 1$   $\underline{x} \le x_{i|k} \le \overline{x}, \ i = 1, ..., N$  $x_{N|k} \in \Omega$ 

(ii). apply  $u_k = u_{0|k}^*$  to the system

Asymptotically stabilizes x = 0 with region of attraction  $\mathcal{F}_N$ ,

$$\mathcal{F}_N = \left\{ x_0 : \exists \left\{ u_0, \dots, u_{N-1} \right\} \text{ such that } \left. \frac{\underline{u} \le u_i \le \overline{u}, \ i = 0, \dots, N-1}{x_N \in \Omega} \right\}$$

= the set of all feasible initial conditions for N-step horizon and terminal set  $\Omega$ 

#### Terminal constraints

Make  $\Omega$  as large as possible so that the feasible set  $\mathcal{F}_N$  is maximized, i.e.

$$\Omega = \mathcal{X}_{\infty} = \lim_{j \to \infty} \mathcal{X}_j$$

where

 $\begin{array}{l} \star \ \mathcal{X}_j = \text{initial conditions for which constraints are satisfied for } j \text{ steps} \\ & \text{with } u = Kx \\ = \left\{ x: \begin{array}{c} \underline{u} \leq K(A + BK)^i x \leq \overline{u} \\ \underline{x} \leq (A + BK)^i x \leq \overline{x} \end{array} \right. i = 0, \dots, j \right\} \end{array}$ 

 $\star~\mathcal{X}_{\infty}=\mathcal{X}_{\nu}$  for some finite  $\nu$  if  $|\mathrm{eig}(A+BK)|<1$ 

#### ₩

 $x \in \mathcal{X}_{\infty}$  if constraints are satisfied on a finite constraint checking horizon

#### Terminal constraints – Example

Plant model:  

$$\begin{aligned}
x_{k+1} &= Ax_k + Bu_k, \quad y_k = Cx_k \\
A &= \begin{bmatrix} 1.1 & 2 \\ 0 & 0.95 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0.0787 \end{bmatrix} \quad C = \begin{bmatrix} -1 & 1 \end{bmatrix}
\end{aligned}$$

input constraints:  $-1 \le u_k \le 1$ 

mode 2 feedback law:  $K = \begin{bmatrix} -1.19 & -7.88 \end{bmatrix}$ =  $K_{LQ}$  for  $Q = C^{\top}C, R = 1$ 

### Terminal constraints – example

Constraints:  $-1 \le u \le 1$ 



#### Terminal constraints – example

Constraints:  $-1 \le u \le 1$ 


Constraints:  $-1 \le u \le 1$ 



Constraints:  $-1 \le u \le 1$ 



In this example  $\mathcal{X}_\infty$  is determined in a finite number of steps because

- $\ \ \, {\bf O} \ \ \, (A+BK) \ \, {\rm is \ strictly \ stable, \ and \ \ } \ \ \,$
- $\ \, {\color{black} \bigcirc } \ \, {\color{black} \left( (A+BK),K \right) } \text{ is observable}$

$$\Rightarrow \begin{cases} \text{shortest distance of hyperplane} \\ K(A + BK)^i x \le 1 \text{ from origin} \end{cases} = \frac{1}{\|K(A + BK)^i\|_2} \\ \to \infty \quad \text{as } i \to \infty \end{cases}$$

**3**  $\Rightarrow \mathcal{X}_{\infty}$  is bounded because  $x_0 \notin \mathcal{X}_{\infty}$  if  $x_0$  is sufficiently large

Here  $\{x: -1 \leq K(A + BK)^i x \leq 1\}$  contains  $\mathcal{X}_4$  for i > 4

 $\mathcal{X}_{\infty} = \mathcal{X}_4$ 

constraint checking horizon:  $\nu = 4$ 

In this example  $\mathcal{X}_\infty$  is determined in a finite number of steps because

- $\ \ \, {\bf O} \ \ \, (A+BK) \ \, {\rm is \ strictly \ stable, \ and \ \ } \ \ \,$
- $\ \, {\color{black} \bigcirc } \ \, {\color{black} \left( (A+BK),K \right) } \text{ is observable}$

$$\Rightarrow \begin{cases} \text{shortest distance of hyperplane} \\ K(A + BK)^i x \le 1 \text{ from origin} \end{cases} = \frac{1}{\|K(A + BK)^i\|_2} \\ \to \infty \quad \text{as } i \to \infty \end{cases}$$

 $\textbf{0} \ \ \Rightarrow \mathcal{X}_{\infty} \text{ is bounded because } x_0 \notin \mathcal{X}_{\infty} \text{ if } x_0 \text{ is sufficiently large}$ 

Here  $\{x: -1 \leq K(A+BK)^i x \leq 1\}$  contains  $\mathcal{X}_4$  for i > 4

#### ₩

 $\mathcal{X}_{\infty} = \mathcal{X}_4$ 

constraint checking horizon:  $\nu = 4$ 

#### Terminal constraints

#### General case

Let 
$$\mathcal{X}_j = \{x : F\Phi^i x \leq 1, i = 0, \dots j\}$$
 with  $\begin{cases} \Phi \text{ strictly stable}\\ (\Phi, F) \text{ observable} \end{cases}$   
then:  
(i).  $\mathcal{X}_{\infty} = \mathcal{X}_{\nu}$  for finite  $\nu$   
(ii).  $\mathcal{X}_{\nu} = \mathcal{X}_{\infty}$  iff  $x \in \mathcal{X}_{\nu+1}$  whenever  $x \in \mathcal{X}_{\nu}$ 

Proof of (ii)

(a). for any 
$$j$$
,  $\mathcal{X}_{j+1} = \mathcal{X}_j \cap \{x : F\Phi^{j+1}x \leq 1\}$   
so  $\mathcal{X}_j \supseteq \mathcal{X}_{j+1} \supseteq \lim_{j \to \infty} \mathcal{X}_j = \mathcal{X}_{\infty}$ 

(b). if  $x \in \mathcal{X}_{\nu+1}$  whenever  $x \in \mathcal{X}_{\nu}$ , then  $\Phi x \in \mathcal{X}_{\nu}$  whenever  $x \in \mathcal{X}_{\nu}$ 

but  $\mathcal{X}_{\nu} \subseteq \left\{x : Fx \leq \mathbf{1}\right\}$  and it follows that  $\mathcal{X}_{\nu} \subseteq \mathcal{X}_{\infty}$ 

(a) & (b)  $\Rightarrow \mathcal{X}_{\nu} = \mathcal{X}_{\infty}$ 

## Terminal constraints - constraint checking horizon

Algorithm for computing constraint checking horizon  $N_c$  for input constraints  $\underline{u} \leq u \leq \overline{u}$ :



# Constrained MPC

Define the terminal set  $\Omega$  as  $\mathcal{X}_{N_c}$ 

MPC algorithm

At each time k = 0, 1, ...(i). solve  $\mathbf{u}_k^* = \arg \min_{\mathbf{u}_k} J(x_k, \mathbf{u}_k)$ s.t.  $\underline{u} \le u_{i|k} \le \overline{u}, \ i = 0, ..., N + N_c$   $\underline{x} \le x_{i|k} \le \overline{x}, \ i = 1, ..., N + N_c$ (ii). apply  $u_k = u_{0|k}^*$  to the system

\_\_\_\_\_

Note

\* predictions for 
$$i = N, \dots N + N_c$$
: 
$$\begin{cases} x_{i|k} = (A + BK)^{i-N} x_{N|k} \\ u_{i|k} = K(A + BK)^{i-N} x_{N|k} \end{cases}$$

 $\star \ x_{N|k} \in \mathcal{X}_{N_c}$  implies linear constraints so online optimization is a QP

# Closed loop performance

Longer horizon N ensures improved predicted cost  $J^*(x_0)$ 

and is likely (but not certain) to give better closed-loop performance

Example: Cost vs N for  $x_0 = (-7.5, 0.5)$ 

| N                 | 6     | 7     | 8     | 11    | > 11  |
|-------------------|-------|-------|-------|-------|-------|
| $J^{*}(x_{0})$    | 364.2 | 357.0 | 356.3 | 356.0 | 356.0 |
| $J_{\rm cl}(x_0)$ | 356.0 | 356.0 | 356.0 | 356.0 | 356.0 |

Closed loop cost:  $J_{cl}(x_0) := \sum_{k=0}^{\infty} (\|x_k\|_Q^2 + \|u_k\|_R^2)$ 

For this initial condition:

MPC with N = 11 is identical to constrained LQ optimal control  $(N = \infty)!$ 

# Closed loop performance – example

Predicted and closed loop inputs for  ${\cal N}=6$ 



# Closed loop performance – example

Predicted and closed loop states for  ${\cal N}=6$ 



# Closed loop performance – example

Predicted and closed loop states for  ${\cal N}=11$ 



# Choice of mode 1 horizon - performance

 $\triangleright$  For this  $x_0: N = 11 \Rightarrow x_{N|0}$  lies in the interior of  $\Omega$ 

```
terminal constraint is inactive
```

no reduction in cost for  ${\cal N}>11$ 

- $\vartriangleright$  Constrained LQ optimal performance is always obtained with  $N \ge N_\infty$  for some finite  $N_\infty$  dependent on  $x_0$
- $\triangleright N_{\infty}$  may be large, implying high computational load but closed loop performance is often close to optimal for  $N < N_{\infty}$

```
(due to receding horizon)
```

```
in this example J_{\rm cl}(x_0) \approx optimal for N \ge 6
```

# Choice of mode 1 horizon - region of attraction

Increasing N increases the feasible set  $\mathcal{F}_N$ 





- ▷ Linear MPC ingredients:
  - \* Infinite cost horizon
  - \* Terminal constraints

(via terminal cost)

(via constraint-checking horizon)

- > Constraints are satisfied over an infinite prediction horizon
- Closed-loop system is asymptotically stable with region of attraction equal to the set of feasible initial conditions
- $\triangleright$  Ideal optimal performance if mode 1 horizon N is large enough

Lecture 4

Robustness to disturbances

### Robustness to disturbances

- Review of nominal model predictive control
- Setpoint tracking and integral action
- Robustness to unknown disturbances
- Handling time-varying disturbances

#### MPC with guaranteed stability - the basic idea



stabilizing linear controller satisfies constraints

MPC optimization for linear model  $x_{k+1} = Ax_k + Bu_k$ 

$$\begin{array}{ll} \underset{\mathbf{u}_{k}}{\text{minimize}} & \sum_{i=0}^{N-1} \left( \|x_{i|k}\|_{Q}^{2} + \|u_{i|k}\|_{R}^{2} \right) + \|x_{N|k}\|_{P}^{2} \\ \text{subject to} & \underline{u} \leq u_{i|k} \leq \overline{u}, \ i = 0, \dots, N + N_{c} \\ & \underline{x} \leq x_{i|k} \leq \overline{x}, \ i = 1, \dots, N + N_{c} \end{array}$$

where

 $\star \ u_{i|k} = K x_{i|k}$  for  $i \geq N$  , with K = unconstrained LQ optimal

\* terminal cost: 
$$||x_{N|k}||_P^2 = \sum_{i=N}^{\infty} (||x_{i|k}||_Q^2 + ||u_{i|k}||_R^2)$$
, with  
 $P - \Phi^T P \Phi = Q + K^T R K, \quad \Phi = A + B K$ 

 $\star$  terminal constraints are defined by the constraint checking horizon  $N_c$ :

$$\frac{\underline{u} \leq K \Phi^{i} x \leq \overline{u}}{\underline{x} \leq \Phi^{i} x \leq \overline{x}} \quad i = 0, \dots, N_{c} \implies \begin{cases} \underline{u} \leq K \Phi^{N_{c}+1} x \leq \overline{u} \\ \underline{x} \leq \Phi^{N_{c}+1} x \leq \overline{x} \end{cases}$$

MPC optimization for linear model  $x_{k+1} = Ax_k + Bu_k$ 

$$\begin{array}{ll} \underset{\mathbf{u}_{k}}{\text{minimize}} & \sum_{i=0}^{N-1} \left( \|x_{i|k}\|_{Q}^{2} + \|u_{i|k}\|_{R}^{2} \right) + \|x_{N|k}\|_{P}^{2} \\ \text{subject to} & \underline{u} \leq u_{i|k} \leq \overline{u}, \ i = 0, \dots, N + N_{c} \\ & \underline{x} \leq x_{i|k} \leq \overline{x}, \ i = 1, \dots, N + N_{c} \end{array}$$

where

 $\star \ u_{i|k} = K x_{i|k}$  for  $i \geq N$  , with K = unconstrained LQ optimal

\* terminal cost: 
$$||x_{N|k}||_P^2 = \sum_{i=N}^{\infty} (||x_{i|k}||_Q^2 + ||u_{i|k}||_R^2)$$
, with  
 $P - \Phi^T P \Phi = Q + K^T R K, \quad \Phi = A + B K$ 

 $\star$  terminal constraints are defined by the constraint checking horizon  $N_c$  :

$$\frac{\underline{u} \leq K \Phi^{i} x \leq \overline{u}}{\underline{x} \leq \Phi^{i} x \leq \overline{x}} \quad i = 0, \dots, N_{c} \implies \begin{cases} \underline{u} \leq K \Phi^{N_{c}+1} x \leq \overline{u} \\ \underline{x} \leq \Phi^{N_{c}+1} x \leq \overline{x} \end{cases}$$

MPC optimization for linear model  $x_{k+1} = Ax_k + Bu_k$ 

$$\begin{array}{ll} \underset{\mathbf{u}_{k}}{\text{minimize}} & \sum_{i=0}^{N-1} \left( \|x_{i|k}\|_{Q}^{2} + \|u_{i|k}\|_{R}^{2} \right) + \|x_{N|k}\|_{P}^{2} \\ \text{subject to} & \underline{u} \leq u_{i|k} \leq \overline{u}, \ i = 0, \dots, N + N_{c} \\ & \underline{x} \leq x_{i|k} \leq \overline{x}, \ i = 1, \dots, N + N_{c} \end{array}$$

where

 $\star \ u_{i|k} = K x_{i|k}$  for  $i \geq N,$  with K = unconstrained LQ optimal

\* terminal cost: 
$$||x_{N|k}||_P^2 = \sum_{i=N}^{\infty} (||x_{i|k}||_Q^2 + ||u_{i|k}||_R^2)$$
, with  
 $P - \Phi^T P \Phi = Q + K^T R K, \quad \Phi = A + B K$ 

 $\star\,$  terminal constraints are defined by the constraint checking horizon  $\mathit{N_c}$ :

$$\frac{\underline{u} \leq K \Phi^{i} x \leq \overline{u}}{\underline{x} \leq \Phi^{i} x \leq \overline{x}} \quad i = 0, \dots, N_{c} \implies \begin{cases} \underline{u} \leq K \Phi^{N_{c}+1} x \leq \overline{u} \\ \underline{x} \leq \Phi^{N_{c}+1} x \leq \overline{x} \end{cases}$$

MPC optimization for nonlinear model  $x_{k+1} = f(x_k, u_k)$ 

$$\begin{array}{ll} \underset{\mathbf{u}_{k}}{\text{minimize}} & \sum_{i=0}^{N-1} \left( \|x_{i|k}\|_{Q}^{2} + \|u_{i|k}\|_{R}^{2} \right) + \|x_{N|k}\|_{P}^{2} \\ \text{subject to} & \underline{u} \leq u_{i|k} \leq \overline{u}, \ i = 0, \dots, N-1 \\ & \underline{x} \leq x_{i|k} \leq \overline{x}, \ i = 1, \dots, N-1 \\ & x_{N|k} \in \Omega \end{array}$$

#### with

$$\star$$
 mode 2 feedback:  $u_{i|k} = \kappa(x_{i|k})$  asymptotically stabilizes  $x = 0$  (locally)

\* terminal cost: 
$$||x_{N|k}||_P^2 \ge \sum_{i=N}^{\infty} (||x_{i|k}||_Q^2 + ||u_{i|k}||_R^2)$$
  
for mode 2 dynamics:  $x_{i+1|k} = f(x_{i|k}, \kappa(x_{i|k}))$ 

 $\star$  terminal constraint set  $\Omega$ : invariant for mode 2 dynamics and constraints

$$\begin{cases} f(x,\kappa(x)) \in \Omega\\ \underline{u} \le \kappa(x) \le \overline{u}, \ \underline{x} \le x \le \overline{x} \end{cases} for all \ x \in \Omega$$

MPC optimization for nonlinear model  $x_{k+1} = f(x_k, u_k)$ 

$$\begin{array}{ll} \underset{\mathbf{u}_{k}}{\text{minimize}} & \sum_{i=0}^{N-1} \left( \|x_{i|k}\|_{Q}^{2} + \|u_{i|k}\|_{R}^{2} \right) + \|x_{N|k}\|_{P}^{2} \\ \text{subject to} & \underline{u} \leq u_{i|k} \leq \overline{u}, \ i = 0, \dots, N-1 \\ & \underline{x} \leq x_{i|k} \leq \overline{x}, \ i = 1, \dots, N-1 \\ & x_{N|k} \in \Omega \end{array}$$

with

$$\star$$
 mode 2 feedback:  $u_{i|k} = \kappa(x_{i|k})$  asymptotically stabilizes  $x = 0$  (locally)

★ terminal cost: 
$$||x_{N|k}||_P^2 \ge \sum_{i=N}^{\infty} (||x_{i|k}||_Q^2 + ||u_{i|k}||_R^2)$$
  
for mode 2 dynamics:  $x_{i+1|k} = f(x_{i|k}, \kappa(x_{i|k}))$ 

 $\star$  terminal constraint set  $\Omega$ : invariant for mode 2 dynamics and constraints

$$\begin{cases} f(x,\kappa(x)) \in \Omega\\ \underline{u} \le \kappa(x) \le \overline{u}, \ \underline{x} \le x \le \overline{x} \end{cases} for all x \in \Omega$$

MPC optimization for nonlinear model  $x_{k+1} = f(x_k, u_k)$ 

$$\begin{array}{ll} \underset{\mathbf{u}_{k}}{\text{minimize}} & \sum_{i=0}^{N-1} \left( \|x_{i|k}\|_{Q}^{2} + \|u_{i|k}\|_{R}^{2} \right) + \|x_{N|k}\|_{P}^{2} \\ \text{subject to} & \underline{u} \leq u_{i|k} \leq \overline{u}, \ i = 0, \dots, N-1 \\ & \underline{x} \leq x_{i|k} \leq \overline{x}, \ i = 1, \dots, N-1 \\ & x_{N|k} \in \Omega \end{array}$$

with

$$\star$$
 mode 2 feedback:  $u_{i|k} = \kappa(x_{i|k})$  asymptotically stabilizes  $x = 0$  (locally)

\* terminal cost: 
$$||x_{N|k}||_P^2 \ge \sum_{i=N}^{\infty} (||x_{i|k}||_Q^2 + ||u_{i|k}||_R^2)$$
  
for mode 2 dynamics:  $x_{i+1|k} = f(x_{i|k}, \kappa(x_{i|k}))$ 

 $\star\,$  terminal constraint set  $\Omega:$  invariant for mode 2 dynamics and constraints

$$\begin{cases} f(x,\kappa(x)) \in \Omega\\ \underline{u} \le \kappa(x) \le \overline{u}, \ \underline{x} \le x \le \overline{x} \end{cases} for all \ x \in \Omega$$

# Comparison

| ⊳ Lir           | near MPC                |          |                                                                                |  |  |
|-----------------|-------------------------|----------|--------------------------------------------------------------------------------|--|--|
|                 | terminal cost           | <u> </u> | exact cost over the mode 2 horizon                                             |  |  |
|                 | terminal constraint set | <i>←</i> | contains all feasible initial conditions for mode 2                            |  |  |
| ▷ Nonlinear MPC |                         |          |                                                                                |  |  |
|                 | terminal cost           | <u> </u> | upper bound on cost over<br>mode 2 horizon                                     |  |  |
|                 | terminal constraint set | ←        | invariant set (usually not the largest)<br>for mode 2 dynamics and constraints |  |  |







Common causes of model error and uncertainty:

- Unknown or time-varying model parameters
  - ▷ unknown loads & inertias, static friction
  - ▷ unknown d.c. gain
- ▶ Random (stochastic) model parameters
  - ▷ random process noise or sensor noise
- Incomplete measurement of states
  - $\triangleright$  state estimation error

# Setpoint tracking

▶ Output setpoint:  $y^0$ 

$$y \to y^0 \quad \Rightarrow \quad \begin{cases} x \to x^0 \\ u \to u^0 \end{cases} \quad \text{where} \qquad \begin{aligned} x^0 &= Ax^0 + Bu^0 \\ y^0 &= Cx^0 \\ & \downarrow \\ y^0 &= C(I-A)^{-1}Bu^0 \end{aligned}$$

 $\blacktriangleright$  Setpoint for  $(u^0,x^0)$  is unique iff  $C(I-A)^{-1}B$  is invertible

e.g. if 
$$\dim(u) = \dim(y)$$
, then  $\begin{cases} u^0 = (C(I-A)^{-1}B)^{-1}y^0\\ x^0 = (I-A)^{-1}Bu^0 \end{cases}$ 

▶ Tracking problem: 
$$y_k \to y^0$$
 subject to   

$$\begin{cases}
\underline{u} \le u_k \le \overline{u} \\
\underline{x} \le x_k \le \overline{x} \\
\text{is only feasible if } \underline{u} \le u^0 \le \overline{u} \text{ and } \underline{x} \le x^0 \le \overline{x}
\end{cases}$$

# Setpoint tracking

► Unconstrained tracking problem:

$$\begin{array}{ll} \underset{\mathbf{u}_k^\delta}{\mathrm{minimize}} & \sum_{i=0}^\infty \bigl(\|x_{i|k}^\delta\|_Q^2 + \|u_{i|k}^\delta\|_R^2\bigr)\\ \text{where} & x^\delta = x-x^0\\ & u^\delta = u-u^0 \end{array}$$

has optimal solution:  $u_k = K x_k^{\delta} + u^0$ ,  $K = K_{LQ}$ 

Constrained tracking problem:

$$\begin{array}{ll} \underset{\mathbf{u}_{k}^{\delta}}{\operatorname{minimize}} & \sum_{i=0}^{\infty} \left( \|x_{i|k}^{\delta}\|_{Q}^{2} + \|u_{i|k}^{\delta}\|_{R}^{2} \right) \\ \text{subject to} & \underline{u} \leq u_{i|k}^{\delta} + u^{0} \leq \overline{u}, \qquad i = 0, 1, \dots \\ & \underline{x} \leq x_{i|k}^{\delta} + x^{0} \leq \overline{x}, \qquad i = 1, 2, \dots \end{array}$$
has optimal solution:  $u_{k} = u_{0|k}^{\delta*} + u^{0}$ 

# Setpoint tracking

If  $\hat{u}^0$  is used instead of  $u^0$  (e.g. if d.c. gain  $C(I-A)^{-1}B$  unknown)

then 
$$u_k = u_{0|k}^{\delta*} + \hat{u}^0$$
 implies 
$$u_k^{\delta} = u_{0|k}^{\delta*} + (\hat{u}^0 - u^0)$$
$$x_{k+1}^{\delta} = Ax_k^{\delta} + Bu_{0|k}^{\delta*} + B\underbrace{(\hat{u}^0 - u^0)}_{\text{constant disturbance}}$$

and if 
$$u_{0|k}^{\delta*} \to K x_k^{\delta}$$
 as  $k \to \infty$ , then  

$$\lim_{k \to \infty} x_k^{\delta} = (I - A - BK)^{-1} B(\hat{u}^0 - u^0) \qquad \neq 0$$

$$\lim_{k \to \infty} y_k - y^0 = \underbrace{C(I - A - BK)^{-1} B(\hat{u}^0 - u^0)}_{\text{steady state tracking error}} \neq 0$$

#### Additive disturbances

Convert (constant) setpoint tracking problem into a regulation problem:

$$x \leftarrow x^{\delta}$$
,  $y \leftarrow y^{\delta}$ ,  $u \leftarrow u^{\delta}$ 

Consider the effect of additive disturbance w:

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + Dw_k, \\ y_k &= Cx_k \end{aligned}$$

Assume that  $w_k$  is unknown at time k, but is known to be:

- $\star$  constant  $(w_k = w$  for all k) or time-varying
- $\star$  within a known polytopic set:  $w_k \in \mathcal{W}$  for all k

where 
$$\mathcal{W} = \operatorname{conv}\{w^{(1)}, \dots, w^{(r)}\}$$
  
or  $\mathcal{W} = \{w : Hw \le 1\}$ 

#### Additive disturbances

Convert (constant) setpoint tracking problem into a regulation problem:

$$x \leftarrow x^{\delta}$$
,  $y \leftarrow y^{\delta}$ ,  $u \leftarrow u^{\delta}$ 

Consider the effect of additive disturbance w:

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + Dw_k, \\ y_k &= Cx_k \end{aligned}$$

Assume that  $w_k$  is unknown at time k, but is known to be:

- $\star$  constant ( $w_k = w$  for all k) or time-varying
- $\star$  within a known polytopic set:  $w_k \in \mathcal{W}$  for all k

where 
$$\mathcal{W} = \operatorname{conv} \{ w^{(1)}, \dots, w^{(r)} \}$$
  
or  $\mathcal{W} = \{ w : Hw \leq \mathbf{1} \}$ 



# Integral action (no constraints)

Introduce integral action to remove steady state error in y by considering the augmented system:

$$z_k = \begin{bmatrix} x_k \\ v_k \end{bmatrix}, \qquad z_{k+1} = \begin{bmatrix} A & 0 \\ C & I \end{bmatrix} z_k + \begin{bmatrix} B \\ 0 \end{bmatrix} u_k + \begin{bmatrix} D \\ 0 \end{bmatrix} w_k$$

 $v_k =$  integrator state

$$v_{k+1} = v_k + y_k$$

\* Linear feedback  $u_k = Kx_k + K_Iv_k$ is stabilizing if  $\left| eig \left( \begin{bmatrix} A + BK & BK_I \\ C & I \end{bmatrix} \right) \right| < 1$ 

\* If the closed-loop system is (strictly) stable and  $w_k \to w = \text{constant}$ then  $u_k \to u^{ss} \implies v_k \to v^{ss} \implies y_k \to 0$  even if  $w \neq 0$ but arbitrary  $K_I$  may destabilize the closed loop system

# Integral action (no constraints)

Introduce integral action to remove steady state error in y by considering the augmented system:

$$z_k = \begin{bmatrix} x_k \\ v_k \end{bmatrix}, \qquad z_{k+1} = \begin{bmatrix} A & 0 \\ C & I \end{bmatrix} z_k + \begin{bmatrix} B \\ 0 \end{bmatrix} u_k + \begin{bmatrix} D \\ 0 \end{bmatrix} w_k$$

 $v_k =$  integrator state

$$v_{k+1} = v_k + y_k$$

\* Linear feedback  $u_k = Kx_k + K_Iv_k$ is stabilizing if  $\left| eig \left( \begin{bmatrix} A + BK & BK_I \\ C & I \end{bmatrix} \right) \right| < 1$ 

\* If the closed-loop system is (strictly) stable and  $w_k \to w = \text{constant}$ then  $u_k \to u^{ss} \implies v_k \to v^{ss} \implies y_k \to 0$  even if  $w \neq 0$ but arbitrary  $K_I$  may destabilize the closed loop system

# Integral action (no constraints)

Ensure stability by using a modified cost:

$$\underset{\mathbf{u}_k}{\text{minimize}} \quad \sum_{i=0}^{\infty} \left( \|z_{i|k}\|_{Q_z}^2 + \|u_{i|k}\|_R^2 \right) \qquad Q_z = \begin{bmatrix} Q & 0\\ 0 & Q_I \end{bmatrix} \succeq 0$$

with predictions generated by an augmented model

$$z_{i+1|k} = \begin{bmatrix} A & 0\\ C & I \end{bmatrix} z_{i|k} + \begin{bmatrix} B\\ 0 \end{bmatrix} u_{i|k}, \qquad z_{0|k} = \begin{bmatrix} x_k\\ v_k \end{bmatrix}$$

 $\star$  this is a "nominal" prediction model since  $w_k=0$  is assumed

$$\star$$
 unconstrained solution:  $u_k = K_z z_k = K x_k + K_I v_k$ 

\* if 
$$R \succ 0$$
,  $\begin{pmatrix} \begin{bmatrix} A & 0 \\ C & I \end{bmatrix}$ ,  $\begin{bmatrix} Q & 0 \\ 0 & Q_I \end{bmatrix}$  is observable and  $w_k \to w = \text{constant}$   
then  $u_k \to u^{ss} \implies v_k \to v^{ss} \implies y_k \to 0$
# Integral action – example

Plant model:

$$x_{k+1} = Ax_k + Bu_k + Dw \qquad \qquad y_k = Cx_k$$
$$A = \begin{bmatrix} 1.1 & 2\\ 0 & 0.95 \end{bmatrix} \quad B = \begin{bmatrix} 0\\ 0.0787 \end{bmatrix} \quad D = \begin{bmatrix} 1\\ 0 \end{bmatrix} \quad C = \begin{bmatrix} -1 & 1 \end{bmatrix}$$

Constraints: none

Cost weighting matrices: 
$$Q_z = \begin{bmatrix} C^T C & 0 \\ 0 & 0.01 \end{bmatrix}$$
,  $R = 1$ 

Unconstrained LQ optimal feedback gain:

$$K_z = \begin{bmatrix} -1.625 & -9.033 & 0.069 \end{bmatrix}$$

## Integral action – example



Closed loop response for initial condition:  $x_0 = (0.5, -0.5)$ no disturbance: w = 0

## Integral action – example



Closed loop response for initial condition:  $x_0 = (0.5, -0.5)$ constant disturbance: w = 0.75

# Constrained MPC

Naive constrained MPC strategy: w = 0 assumed in predictions

$$\begin{array}{ll} \underset{\mathbf{u}_{k}}{\text{minimize}} & \sum_{i=0}^{N-1} \left( \|z_{i|k}\|_{Q_{z}}^{2} + \|u_{i|k}\|_{R}^{2} \right) + \|z_{N|k}\|_{P}^{2} \\ \text{subject to} & \underline{u} \leq u_{i|k} \leq \overline{u}, \ i = 0, \dots, N + N_{c} \\ & \underline{x} \leq x_{i|k} \leq \overline{x}, \ i = 1, \dots, N + N_{c} \end{array}$$

with: P and  $N_c$  determined for mode 2 control law  $u_{i|k} = K_z z_{i|k}$ and initial prediction state:  $z_{0|k} = \begin{bmatrix} x_k \\ v_k \end{bmatrix}$  where  $v_{k+1} = v_k + y_k$ 

\* If closed loop system is stable

then  $u_k \to u^{ss} \implies v_k \to v^{ss} \implies y_k \to 0$ 

 $\star$  but disturbance  $w_k$  is ignored in predictions, so

 $\begin{cases} J^*(z_{k+1}) - J^*(z_k) \not\leq 0\\ \text{feasibility at time } k \not\Rightarrow \text{ feasibility at } k+1 \end{cases}$ 

therefore no guarantee of stability

# Constrained MPC

Naive constrained MPC strategy: w = 0 assumed in predictions

$$\begin{array}{ll} \underset{\mathbf{u}_{k}}{\text{minimize}} & \sum_{i=0}^{N-1} \left( \|z_{i|k}\|_{Q_{z}}^{2} + \|u_{i|k}\|_{R}^{2} \right) + \|z_{N|k}\|_{P}^{2} \\ \text{subject to} & \underline{u} \leq u_{i|k} \leq \overline{u}, \ i = 0, \dots, N + N_{c} \\ & \underline{x} \leq x_{i|k} \leq \overline{x}, \ i = 1, \dots, N + N_{c} \end{array}$$

with: P and  $N_c$  determined for mode 2 control law  $u_{i|k} = K_z z_{i|k}$ and initial prediction state:  $z_{0|k} = \begin{bmatrix} x_k \\ v_k \end{bmatrix}$  where  $v_{k+1} = v_k + y_k$ 

 $\star$  If closed loop system is stable

then  $u_k \to u^{ss} \implies v_k \to v^{ss} \implies y_k \to 0$ 

 $\star$  but disturbance  $w_k$  is ignored in predictions, so

$$\begin{cases} J^*(z_{k+1}) - J^*(z_k) \not\leq 0\\ \text{feasibility at time } k \not\Rightarrow \text{ feasibility at } k+1 \end{cases}$$

therefore no guarantee of stability

## Constrained MPC – example



## Robust constraints

If predictions satisfy constraints  $\begin{cases} \text{ for all prediction times } i = 0, 1, \dots \\ \text{ for all disturbances } w_i \in \mathcal{W} \end{cases}$ 

then feasibility of constraints at time k ensures feasibility at time k+1

Decompose predictions into  $\triangleright$ 

> nominal predicted state  $S_i|_k$ uncertain predicted state  $e_{i|k}$

where

$$x_{i|k} = s_{i|k} + e_{i|k} \qquad \begin{cases} s_{i+1|k} = \Phi s_{i|k} + Bc_{i|k} & s_{0|k} = x_k \\ e_{i+1|k} = \Phi e_{i|k} + Dw_{i|k} & e_{0|k} = 0 \end{cases}$$

Pre-stabilized predictions:  $\triangleright$ 

$$u_{i|k} = K x_{i|k} + c_{i|k}$$
 and  $\Phi = A + BK$ 

where  $K = K_{LQ}$  is the unconstrained LQ optimal gain

# Pre-stabilized predictions – example

Scalar system:

uncertainty:

$$\begin{array}{lll} & x_{k+1} = 2x_k + u_k + w_k, & \text{constraint:} & |x_k| \le 2\\ & e_{i|k} = \sum_{j=0}^{i-1} 2^j w = (2^i - 1)w, & \text{disturbance:} & w_k = w\\ & |w| \le 1 \end{array}$$

1

# Pre-stabilized predictions - example

Scalar system: uncertainty:

$$\begin{array}{ll} x_{k+1} = 2x_k + u_k + w_k, & \text{constraint:} & |x_k| \leq 2\\ e_{i|k} = \sum_{j=0}^{i-1} 2^j w = (2^i-1)w, & \text{disturbance:} & w_k = w\\ & |w| \leq 1 \end{array}$$

Robust constraints:

$$\begin{split} |s_{i|k} + e_{i|k}| &\leq 2 \quad \text{for all } |w| \leq 1 \\ & \updownarrow \\ |s_{i|k}| \leq 2 - \max_{|w| \leq 1} |e_{i|k}| \\ & \Downarrow \\ |s_{i|k}| \leq 2 - (2^i - 1) \\ & \Downarrow \\ & \text{infeasible for all } i > 1 \end{split}$$



# Pre-stabilized predictions – example

Avoid infeasibility by using pre-stabilized predictions:

$$\begin{split} u_{i|k} &= K x_{i|k} + c_{i|k}, \qquad K = -1.9, \qquad c_{i|k} = \begin{cases} \text{free} & i = 0, \dots, N-1 \\ 0 & i \geq N \end{cases} \\ \text{stable predictions:} \ e_{i|k} &= \sum_{j=0}^{i-1} 0.1^j w = (1-0.1^i) w / 0.9, \quad |w| \leq 1 \end{split}$$

# Pre-stabilized predictions – example

Avoid infeasibility by using pre-stabilized predictions:

$$\begin{aligned} u_{i|k} &= Kx_{i|k} + c_{i|k}, \qquad K = -1.9, \qquad c_{i|k} = \begin{cases} \text{free} & i = 0, \dots, N-1 \\ 0 & i \ge N \end{cases} \\ \text{stable predictions:} \quad e_{i|k} &= \sum_{j=0}^{i-1} 0.1^{j}w = (1 - 0.1^{i})w/0.9, \quad |w| \le 1 \end{aligned}$$

$$\begin{aligned} \text{Robust constraints:} \\ |s_{i|k} + e_{i|k}| \le 2 \quad \text{for all } |w| \le 1 \end{aligned}$$

$$\begin{aligned} |s_{i|k}| \le 2 - \max_{|w|\le 1} |e_{i|k}| \\ \downarrow \\ |s_{i|k}| \le 2 - \max_{|w|\le 1} |e_{i|k}| \\ \downarrow \\ |s_{i|k}| \le 2 - (1 - 0.1^{i})/0.9 \\ > 0 \text{ for all } i \end{aligned}$$

sample

# Pre-stabilized predictions

▷ Feedback structure of MPC with open loop predictions:



▷ Feedback structure of MPC with pre-stabilized predictions:



### General form of robust constraints

How can we impose (general linear) constraints robustly?

 $\star\,$  Pre-stabilized predictions:

$$x_{i|k} = s_{i|k} + e_{i|k} \begin{cases} s_{i+1|k} = \Phi s_{i|k} + Bc_{i|k} & s_{0|k} = x_k \\ e_{i+1|k} = \Phi e_{i|k} + Dw_{i|k} & e_{0|k} = 0 \end{cases}$$
$$\implies e_{i|k} = Dw_{i-1} + \Phi Dw_{i-2} + \dots + \Phi^{i-1}Dw_0$$

★ General linear constraints:  $Fx_{i|k} + Gu_{i|k} \le 1$ are equivalent to tightened constraints on nominal predictions:

$$(F+GK)s_{i|k}+Gc_{i|k} \le \mathbf{1}-h_i$$

where 
$$h_0 = 0$$
  
 $h_i = \max_{w_0,\ldots,w_{i-1} \in \mathcal{W}} (F + GK) e_{i|k}, i = 1, 2, \ldots$ 

(i.e.  $h_i = h_{i-1} + \max_{w \in \mathcal{W}} (F + GK)w$ requiring one LP for each row of  $h_i$ )

## Tube interpretation

The uncertainty in predictions:  $e_{i+1|k} = \Phi e_{i|k} + Dw_i$ ,  $w_i \in W$ evolves inside a tube (a sequence of sets):  $e_{i|k} \in E_{i|k}$ , where

$$E_{i|k} = D\mathcal{W} \oplus \Phi D\mathcal{W} \oplus \dots \oplus \Phi^{i-1}D\mathcal{W}, \quad i = 1, 2, \dots$$

Hence we can define:

$$\star$$
 a state tube  $x_{i|k}=s_{i|k}+e_{i|k}\in\mathcal{X}_{i|k}$  
$$\mathcal{X}_{i|k}=\{s_{i|k}\}\oplus E_{i|k},\ i=0,1,\ldots$$

 $\star$  a control input tube  $u_{i|k} = Kx_{i|k} + c_{i|k} = Ks_{i|k} + c_{i|k} + Ke_{i|k} \in \mathcal{U}_{i|k}$  $\mathcal{U}_{i|k} = \{Ks_{i|k} + c_{i|k}\} \oplus KE_{i|k}, \ i = 0, 1, \dots$ 

and impose constraints robustly for the state and input tubes

(where  $\oplus$  is Minkowski set addition)

# Tube interpretation

The uncertainty in predictions:  $e_{i+1|k} = \Phi e_{i|k} + Dw_i$ ,  $w_i \in W$ evolves inside a tube (a sequence of sets):  $e_{i|k} \in E_{i|k}$ , where

$$E_{i|k} = D\mathcal{W} \oplus \Phi D\mathcal{W} \oplus \cdots \oplus \Phi^{i-1}D\mathcal{W}, \ i = 1, 2, \dots$$

e.g. for constraints  $Fx \leq \mathbf{1}$  (G = 0)



# Robust MPC

# Prototype robust MPC algorithm Offline: compute $N_c$ and $h_1, \ldots, h_{N_c}$ . Online at $k = 0, 1, \ldots$ : (i). solve $\mathbf{c}_k^* = \arg\min_{\mathbf{c}_k} J(x_k, \mathbf{c}_k)$ s.t. $(F + GK)s_{i|k} + Gc_{i|k} \leq \mathbf{1} - h_i, \ i = 0, \ldots, N + N_c$ (ii). apply $u_k = Kx_k + c_{0|k}^*$ to the system

- $\star$  tightened linear constraints are applied to nominal predictions
- $\star$  N<sub>c</sub> is the constraint-checking horizon defined by:

$$(F+GK)\Phi^{N_c+1}s \le \mathbf{1} - h_{N_c+1}$$

for all s satisfying  $(F + GK)\Phi^i s \leq 1 - h_i, i = 0, \dots, N_c$ 

 $\star\,$  the online optimization is robustly recursively feasible

# Robust MPC

# Prototype robust MPC algorithm Offline: compute $N_c$ and $h_1, \ldots, h_{N_c}$ . Online at $k = 0, 1, \ldots$ : (i). solve $\mathbf{c}_k^* = \arg\min_{\mathbf{c}_k} J(x_k, \mathbf{c}_k)$ s.t. $(F + GK)s_{i|k} + Gc_{i|k} \leq \mathbf{1} - h_i, \ i = 0, \ldots, N + N_c$ (ii). apply $u_k = Kx_k + c_{0|k}^*$ to the system

nominal cost, evaluated assuming  $w_i = 0$  for all *i*:

$$J(x_k, \mathbf{c}_k) = \sum_{i=0}^{\infty} \left( \|s_{i|k}\|_Q^2 + \|Ks_{i|k} + c_{i|k}\|_R^2 \right) = \|x_k\|_P^2 + \|\mathbf{c}_k\|_{W_c}^2$$
 (one possible choice)

## Convergence of robust MPC with nominal cost

If  $u_{i|k} = Kx_{i|k} + c_{i|k}$  for  $K = K_{LQ}$ , then:

 $\star$  the unconstrained solution is  $\mathbf{c}_k=0$ , so the nominal cost is

$$J(x_k, \mathbf{c}_k) = \|x_k\|_P^2 + \|\mathbf{c}_k\|_{W_c}^2$$

and  $W_c$  is block-diagonal:  $W_c = \text{diag}\{P_c, \dots, P_c\}$ 

\* recursive feasibility 
$$\Rightarrow \tilde{\mathbf{c}}_{k+1} = (c^*_{1|k}, \dots, c^*_{N-1|k}, 0)$$
 feasible at  $k+1$ 

$$\begin{split} \star \text{ hence } & \|\mathbf{c}_{k+1}^*\|_{W_c}^2 \le \|\mathbf{c}_k^*\|_{W_c}^2 - \|c_{0|k}^*\|_{P_c}^2 \\ \Rightarrow & \sum_{k=0}^{\infty} \|c_{0|k}\|_{P_c}^2 \le \|\mathbf{c}_0^*\|_{W_c}^2 < \infty \\ \Rightarrow & \lim_{k \to \infty} c_{0|k} = 0 \end{split}$$

$$\star$$
 therefore  $u_k \to Kx_k$  as  $k \to \infty$   
 $x_k \to$  the (minimal) robustly invariant set  
under unconstrained LQ optimal feedback

# Robust MPC with constant disturbance

Assume  $w_k = w = \text{constant for all } k$ 

combine: pre-stabilized predictions augmented state space model

 $\star\,$  Predicted state and input sequences:

$$x_{i|k} = \begin{bmatrix} I & 0 \end{bmatrix} (s_{i|k} + e_{i|k}) u_{i|k} = K_z(s_{i|k} + e_{i|k}) + c_{i|k}$$

\* Prediction model:

nominal 
$$s_{i+1|k} = \Phi s_{i|k} + \begin{bmatrix} B \\ 0 \end{bmatrix} c_{i|k}$$
  $\Phi = \begin{bmatrix} A & 0 \\ C & I \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} K_z$   
uncertain  $e_{i|k} = \sum_{j=0}^{i-1} \Phi^j \begin{bmatrix} D \\ 0 \end{bmatrix} w$   $s_{0|k} = \begin{bmatrix} x_k \\ v_k \end{bmatrix}$ ,  $e_{0|k} = 0$ 

★ Nominal cost:

$$J(x_k, v_k, \mathbf{c}_k) = \sum_{i=0}^{\infty} \left( \|s_{i|k}\|_{Q_z}^2 + \|K_z s_{i|k} + c_{i|k}\|_R^2 \right)$$

## Robust MPC with constant disturbance

Assume  $w_k = w = \text{constant for all } k$ 

combine: pre-stabilized predictions augmented state space model

★ robust state constraints:

$$\underline{x} \le x_{i|k} \le \overline{x} \quad \Longleftrightarrow \quad \underline{x} + h_i \le s_{i|k} \le \overline{x} - h_i$$
$$h_i = \max_{w \in \mathcal{W}} \begin{bmatrix} I & 0 \end{bmatrix} \sum_{j=0}^{i-1} \Phi^j \begin{bmatrix} D\\ 0 \end{bmatrix} w$$

★ robust input constraints:

$$\underline{u} \le u_{i|k} \le \overline{u} \quad \Longleftrightarrow \quad \underline{u} + h'_i \le K_z s_{i|k} + c_{i|k} \le \overline{u} - h'_i$$
$$h'_i = \max_{w \in \mathcal{W}} K_z \sum_{j=0}^{i-1} \Phi^j \begin{bmatrix} D\\0 \end{bmatrix} w$$

 $\star~N_c$  and  $h_i,~h_i'$  for  $i=1,\ldots,N_c$  can be computed offline

## Robust MPC with constant disturbance – example



# Summary

Integral action: augment model with integrated output error include integrated output error in cost

then

- (i). closed loop system is stable if w = 0
- (ii). steady state error must be zero if response is stable for  $w \neq 0$
- Robust MPC: use pre-stabilized predictions apply constraints for all possible future uncertainty

then

- (i). constraint feasibility is guaranteed at all times if initially feasible
- (ii). closed loop system inherits the stability and convergence properties of unconstrained LQ optimal control (assuming nominal cost)

# Overview of the course

#### Introduction and Motivation

Basic MPC strategy; prediction models; input and state constraints; constraint handling: saturation, anti-windup, predictive control

### Prediction and optimization

Input/state prediction equations; unconstrained optimization. Infinite horizon cost; dual mode predictions. Incorporating constraints; quadratic programming.

#### Closed loop properties

Lyapunov analysis based on predicted cost. Recursive feasibility; terminal constraints; the constraint checking horizon. Constrained LQ-optimal control.

#### Robustness to disturbances

Setpoint tracking; MPC with integral action. Robustness to constant disturbances: prestabilized predictions and robust feasibility. Handling time-varying disturbances.