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Model Predictive Control Examples Sheet: Solutions

Mark Cannon, Hilary Term 2023

Prediction equations

1. (a). The predicted state vector is given by

x0|k = xk

x1|k = Axk +Bu0|k
...

xN |k = ANxk + AN−1Bu0|k + AN−2Bu1|k + · · ·+BuN−1|k

so xk =Mxk + Cuk, where

xk =


x0|k

x1|k
...

xN |k

, uk =


u0|k

u1|k
...

uN−1|k

,M =


I

A

A2

...

AN

, C =


0 0 · · · 0

B 0 · · · 0

AB B · · · 0
...

... . . . ...

AN−1B AN−2B · · · B

.

For the given A and B we getM =



1 0

0 1

1 0.1

0 2

1 0.3

0 4

1 0.7

0 8


, and C =



0 0 0

0 0 0

0 0 0

0.5 0 0

0.05 0 0

1 0.5 0

0.15 0.05 0

2 1 0.5


.

(b). For yk = Cxk with C =
[
1 0

]
and λ = 1, the cost for N = 3 is:

Jk =
2∑
i=0

(
y2i|k + u2i|k

)
+ y23|k = x>kQxk + u>kRuk
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= u>k (C>QC +R)uk + 2x>kM>QCuk + x>kM>QMxk

with

Q =


C>C 0 0 0

0 C>C 0 0

0 0 C>C 0

0 0 0 C>C

 , R =

1 0 0

0 1 0

0 0 1

 ,
so Jk = u>kHuk + 2x>k F

>uk + x>kGxk with

H =

 1.025 0.0075 0

0.0075 1.0025 0

0 0 1

 , F =

 0.2 0.12

0.05 0.035

0 0

 , G =

[
4 1.1

1.1 0.59

]
.

(c). Terms in Jk that depend on u0|k:

Jk = 1.025u20|k + 2× 0.0075u0|ku1|k + · · ·

+ 2× 0.2x1u0|k + 2× 0.12x2u0|k + · · ·

hence
∂J

∂u0|k
= 2×1.025u0|k + 2×0.0075u1|k + 2×0.2x1 + 2×0.12x2,

which is the first element of 2Huk +2Fxk. Repeating this for u1|k and

u2|k gives

∇uJ =

[
∂J

∂u0|k

∂J

∂u1|k

∂J

∂u2|k

]>
= 2Huk + 2Fxk.

2. (a). The optimal predicted input sequence is given by

u∗k = −H−1Fxk = −

0.1948 0.1168

0.0484 0.0340

0 0


and the predictive control law is therefore

uk = Lxk, L = −
[
0.1948 0.1168

]
.

This is a linear feedback law so we can determine stability by checking

the closed loop poles: eig(A+BL) = {1.01, 1.93}. Since these poles

lie outside the unit circle, the closed loop system is unstable.
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(b). Code to construct
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1. (a). The state predictions are  

 

   

x(k | k) = x(k)
x(k +1| k) = Ax(k) + Bu(k | k)

!

x(k + N | k) = AN x(k) + AN !1Bu(k | k) +"+ Bu(k + N !1| k)

 

so    x(k + i | k) = Aix(k)+ Ciu(k) ,     u(k) = [u(k | k) u(k +1| k) ! u(k + N !1| k)]T
, 

where 
   C0 = 0 0 ! 0!" #$ , and   Ci  for    i = 1,…, N  is the  i th block-row of C : 

 

    

C =

B 0 ! 0
AB B ! 0
" " # "

AN!1B AN!2 B … B

"

#

$
$
$
$
$

%

&

'
'
'
'
'

. 

For the given  A  and B : 

 
  
A =

1 0.1
0 2
!

"
#

$

%
& , B =

0
0.5
!

"
#

$

%
&  

we get 

 
   
{B, AB, A2 B}=

0
0.5
!

"
#

$

%
& ,

0.05
1

!

"
#

$

%
& ,

0.15
2

!

"
#

$

%
&

'
(
)

*)

+
,
)

-)
i.e. C3 =

0.15 0.05 0
2 1 0.5

!

"
#

$

%
& . 

(b). For   y(k) = Cx(k)  with   C = [1 0]  and ! = 1, the cost for   N = 3 is given by 

    

J (k) = y2 (k + i | k) + u2 (k + i | k)!" #$
i=0

2

% + y2 (k + 3 | k)

= xT (k)CTCx(k) + u2 (k | k)
+ ( Ax(k) + C1u(k))T CTC( Ax(k) + C1u(k)) + u2 (k +1| k)

+ ( A2x(k) + C2u(k))T CTC( A2x(k) + C2u(k)) + u2 (k + 2 | k)

+ ( A3x(k) + C3u(k))T CTC( A3x(k) + C3u(k))

= uT (k) I + Ci
TCTCCi

i=0

3

%&
'(

)
*+

u(k) + 2xT (k) AiTCTCCi
i=0

3

% u(k) + xT (k) AiTCTCAi

i=0

3

% x(k)

= uT (k)Hu(k) + 2xT (k)F T u(k) + xT (k)Gx(k)

 

  

where H =
1.025 0.0075 0
0.0075 1.0025 0

0 0 1

!

"

#
#
#

$

%

&
&
&
, F =

0.2 0.12
0.05 0.035

0 0

!

"

#
#
#

$

%

&
&
&
, G =

4 1.1
1.1 0.59
!

"
#

$

%
& . 
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(c). Terms in   J (k)  depending on  u(k | k) : 

 
   

J = 1.025u2 (k | k) + 0.0075u(k | k)u(k +1| k) + 0.0075u(k +1| k)u(k | k) +!
+ 2x10.2u(k | k) + 2x20.12u(k | k) +!

 

hence 

 
  

!J
!u(k | k)

= 2 "1.025u(k | k) + 2 " 0.0075u(k +1| k) + 2 " 0.2x1 + 2 " 0.12x2  

which is the first element of    2Hu + 2Fx . Repeating this for   u(k +1| k)  and 

  u(k + 2 | k)  gives 

    !u J = ["J / "u(k | k) "J / "u(k +1| k) "J / "u(k + 2 | k)]T = 2Hu + 2Fx . 

 
2. (a). The optimal predicted input sequence for no constraints is given by: 

 

   

u!(k) = "H "1Fx(k) = "
0.1948 0.1168
0.0484 0.0340

0 0

#

$

%
%
%

&

'

(
(
(

x(k)  

(note that the last row is zero because   u(k + 2 | k)  has no effect on   y(k + 3 | k)  
and hence no effect on   J (k)  since  CB = 0 ) and the predictive control law is 

   u(k) = KN =3x(k), KN =3 = ![0.1948 0.1168] . 

Therefore the closed-loop poles are: 

   eig( A+ BKN =3) = {1.01, 1.93}, 

implying that the closed-loop system is unstable. 
 

(b). Fragment of code to construct    AA = [I AT ! AN T ]T  and    CC = [C0
T CT ]T : 

 
Fragment of code to construct  H  and F : 

nx = size(A,1); AA = eye(nx); 
CC = zeros(nx,N); 
for(i=1:N), 
  row = [i*nx+1:(i+1)*nx]; 
  CC(row,:)=[AA(end-nx+1:end,:)*B,CC(end-nx+1:end,1:end-1)]; 
  AA(row,:) = A*AA(end-nx+1:end,:); 
end; 

H = eye(N) + CC(end-nx+1:end,:)’*C’*C*CC(end-nx+1:end,:); 
F = CC(end-nx+1:end,:)’*C’*C*AA(end-nx+1:end,:); 
for(i=1:N), 
 row = [(i-1)*nx+1:i*nx]; 
 H = H + CC(row,:)’*C’*C*CC(row,:); 
 F = F + CC(row,:)’*C’*C*AA(row,:); 
end; 

=
[
I A> · · · AN>

]>
and

 1 

C21 Model Predictive Control 

Examples sheet solutions 

Mark Cannon MT 2011 
Prediction equations 

1. (a). The state predictions are  

 

   

x(k | k) = x(k)
x(k +1| k) = Ax(k) + Bu(k | k)

!

x(k + N | k) = AN x(k) + AN !1Bu(k | k) +"+ Bu(k + N !1| k)

 

so    x(k + i | k) = Aix(k)+ Ciu(k) ,     u(k) = [u(k | k) u(k +1| k) ! u(k + N !1| k)]T
, 

where 
   C0 = 0 0 ! 0!" #$ , and   Ci  for    i = 1,…, N  is the  i th block-row of C : 

 

    

C =

B 0 ! 0
AB B ! 0
" " # "

AN!1B AN!2 B … B

"

#

$
$
$
$
$

%

&

'
'
'
'
'

. 

For the given  A  and B : 

 
  
A =

1 0.1
0 2
!

"
#

$

%
& , B =

0
0.5
!

"
#

$

%
&  

we get 

 
   
{B, AB, A2 B}=

0
0.5
!

"
#

$

%
& ,

0.05
1

!

"
#

$

%
& ,

0.15
2

!

"
#

$

%
&

'
(
)

*)

+
,
)

-)
i.e. C3 =

0.15 0.05 0
2 1 0.5

!

"
#

$

%
& . 

(b). For   y(k) = Cx(k)  with   C = [1 0]  and ! = 1, the cost for   N = 3 is given by 

    

J (k) = y2 (k + i | k) + u2 (k + i | k)!" #$
i=0

2

% + y2 (k + 3 | k)

= xT (k)CTCx(k) + u2 (k | k)
+ ( Ax(k) + C1u(k))T CTC( Ax(k) + C1u(k)) + u2 (k +1| k)
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where H =
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(c). Terms in   J (k)  depending on  u(k | k) : 

 
   

J = 1.025u2 (k | k) + 0.0075u(k | k)u(k +1| k) + 0.0075u(k +1| k)u(k | k) +!
+ 2x10.2u(k | k) + 2x20.12u(k | k) +!

 

hence 

 
  

!J
!u(k | k)

= 2 "1.025u(k | k) + 2 " 0.0075u(k +1| k) + 2 " 0.2x1 + 2 " 0.12x2  

which is the first element of    2Hu + 2Fx . Repeating this for   u(k +1| k)  and 

  u(k + 2 | k)  gives 

    !u J = ["J / "u(k | k) "J / "u(k +1| k) "J / "u(k + 2 | k)]T = 2Hu + 2Fx . 

 
2. (a). The optimal predicted input sequence for no constraints is given by: 

 

   

u!(k) = "H "1Fx(k) = "
0.1948 0.1168
0.0484 0.0340

0 0

#

$

%
%
%

&

'

(
(
(

x(k)  

(note that the last row is zero because   u(k + 2 | k)  has no effect on   y(k + 3 | k)  
and hence no effect on   J (k)  since  CB = 0 ) and the predictive control law is 

   u(k) = KN =3x(k), KN =3 = ![0.1948 0.1168] . 

Therefore the closed-loop poles are: 

   eig( A+ BKN =3) = {1.01, 1.93}, 

implying that the closed-loop system is unstable. 
 

(b). Fragment of code to construct    AA = [I AT ! AN T ]T  and    CC = [C0
T CT ]T : 

 
Fragment of code to construct  H  and F : 

nx = size(A,1); AA = eye(nx); 
CC = zeros(nx,N); 
for(i=1:N), 
  row = [i*nx+1:(i+1)*nx]; 
  CC(row,:)=[AA(end-nx+1:end,:)*B,CC(end-nx+1:end,1:end-1)]; 
  AA(row,:) = A*AA(end-nx+1:end,:); 
end; 

H = eye(N) + CC(end-nx+1:end,:)’*C’*C*CC(end-nx+1:end,:); 
F = CC(end-nx+1:end,:)’*C’*C*AA(end-nx+1:end,:); 
for(i=1:N), 
 row = [(i-1)*nx+1:i*nx]; 
 H = H + CC(row,:)’*C’*C*CC(row,:); 
 F = F + CC(row,:)’*C’*C*AA(row,:); 
end; 

=
[
C>0 C>

]>
:

 1 

Fragment of code to construct    AA = [I AT ! AN T ]T  and    CC = [C0
T CT ]T : 

 
Fragment of code to construct  H  and F : 

 
 
New: 
 

 

 

nx = size(A,1); AA = eye(nx); 
CC = zeros(nx,N); 
for(i=1:N), 
  row = [i*nx+1:(i+1)*nx]; 
  CC(row,:)=[AA(end-nx+1:end,:)*B,CC(end-nx+1:end,1:end-1)]; 
  AA(row,:) = A*AA(end-nx+1:end,:); 
end; 

H = eye(N) + CC(end-nx+1:end,:)’*C’*C*CC(end-nx+1:end,:); 
F = CC(end-nx+1:end,:)’*C’*C*AA(end-nx+1:end,:); 
for(i=1:N), 
 row = [(i-1)*nx+1:i*nx]; 
 H = H + CC(row,:)’*C’*C*CC(row,:); 
 F = F + CC(row,:)’*C’*C*AA(row,:); 
end; 

AA = [eye(nx);zeros(N*nx,nx)]; CC = zeros((N+1)*nx,N*nu); 
tmp = eye(nx);  
for i = 1:N, 
  rows = i*nx+(1:nx); 
  CC(rows,:) = [tmp*B,CC(rows-nx,1:end-nu)]; 
  tmp = A*tmp;  
  AA(rows,:) = tmp; 
end 
 

H = eye(N); F = 0; 
for i=1:N+1, 
 rows = (i-1)*nx+(1:nx); 
 H = H + CC(rows,:)’*C’*C*CC(rows,:); 
 F = F + CC(rows,:)’*C’*C*AA(rows,:); 
end 

Code to construct
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(b). For   y(k) = Cx(k)  with   C = [1 0]  and ! = 1, the cost for   N = 3 is given by 

    

J (k) = y2 (k + i | k) + u2 (k + i | k)!" #$
i=0

2

% + y2 (k + 3 | k)

= xT (k)CTCx(k) + u2 (k | k)
+ ( Ax(k) + C1u(k))T CTC( Ax(k) + C1u(k)) + u2 (k +1| k)

+ ( A2x(k) + C2u(k))T CTC( A2x(k) + C2u(k)) + u2 (k + 2 | k)

+ ( A3x(k) + C3u(k))T CTC( A3x(k) + C3u(k))

= uT (k) I + Ci
TCTCCi

i=0

3

%&
'(

)
*+

u(k) + 2xT (k) AiTCTCCi
i=0

3

% u(k) + xT (k) AiTCTCAi

i=0

3

% x(k)

= uT (k)Hu(k) + 2xT (k)F T u(k) + xT (k)Gx(k)

 

  

where H =
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(c). Terms in   J (k)  depending on  u(k | k) : 

 
   

J = 1.025u2 (k | k) + 0.0075u(k | k)u(k +1| k) + 0.0075u(k +1| k)u(k | k) +!
+ 2x10.2u(k | k) + 2x20.12u(k | k) +!

 

hence 

 
  

!J
!u(k | k)

= 2 "1.025u(k | k) + 2 " 0.0075u(k +1| k) + 2 " 0.2x1 + 2 " 0.12x2  

which is the first element of    2Hu + 2Fx . Repeating this for   u(k +1| k)  and 

  u(k + 2 | k)  gives 

    !u J = ["J / "u(k | k) "J / "u(k +1| k) "J / "u(k + 2 | k)]T = 2Hu + 2Fx . 

 
2. (a). The optimal predicted input sequence for no constraints is given by: 

 

   

u!(k) = "H "1Fx(k) = "
0.1948 0.1168
0.0484 0.0340

0 0

#

$

%
%
%

&

'

(
(
(

x(k)  

(note that the last row is zero because   u(k + 2 | k)  has no effect on   y(k + 3 | k)  
and hence no effect on   J (k)  since  CB = 0 ) and the predictive control law is 

   u(k) = KN =3x(k), KN =3 = ![0.1948 0.1168] . 

Therefore the closed-loop poles are: 

   eig( A+ BKN =3) = {1.01, 1.93}, 

implying that the closed-loop system is unstable. 
 

(b). Fragment of code to construct    AA = [I AT ! AN T ]T  and    CC = [C0
T CT ]T : 

 
Fragment of code to construct  H  and F : 

nx = size(A,1); AA = eye(nx); 
CC = zeros(nx,N); 
for(i=1:N), 
  row = [i*nx+1:(i+1)*nx]; 
  CC(row,:)=[AA(end-nx+1:end,:)*B,CC(end-nx+1:end,1:end-1)]; 
  AA(row,:) = A*AA(end-nx+1:end,:); 
end; 

H = eye(N) + CC(end-nx+1:end,:)’*C’*C*CC(end-nx+1:end,:); 
F = CC(end-nx+1:end,:)’*C’*C*AA(end-nx+1:end,:); 
for(i=1:N), 
 row = [(i-1)*nx+1:i*nx]; 
 H = H + CC(row,:)’*C’*C*CC(row,:); 
 F = F + CC(row,:)’*C’*C*AA(row,:); 
end; 

= H and
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(b). For   y(k) = Cx(k)  with   C = [1 0]  and ! = 1, the cost for   N = 3 is given by 
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(c). Terms in   J (k)  depending on  u(k | k) : 
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+ 2x10.2u(k | k) + 2x20.12u(k | k) +!

 

hence 

 
  

!J
!u(k | k)

= 2 "1.025u(k | k) + 2 " 0.0075u(k +1| k) + 2 " 0.2x1 + 2 " 0.12x2  

which is the first element of    2Hu + 2Fx . Repeating this for   u(k +1| k)  and 

  u(k + 2 | k)  gives 

    !u J = ["J / "u(k | k) "J / "u(k +1| k) "J / "u(k + 2 | k)]T = 2Hu + 2Fx . 

 
2. (a). The optimal predicted input sequence for no constraints is given by: 

 

   

u!(k) = "H "1Fx(k) = "
0.1948 0.1168
0.0484 0.0340

0 0

#

$

%
%
%

&

'

(
(
(

x(k)  

(note that the last row is zero because   u(k + 2 | k)  has no effect on   y(k + 3 | k)  
and hence no effect on   J (k)  since  CB = 0 ) and the predictive control law is 

   u(k) = KN =3x(k), KN =3 = ![0.1948 0.1168] . 

Therefore the closed-loop poles are: 

   eig( A+ BKN =3) = {1.01, 1.93}, 

implying that the closed-loop system is unstable. 
 

(b). Fragment of code to construct    AA = [I AT ! AN T ]T  and    CC = [C0
T CT ]T : 

 
Fragment of code to construct  H  and F : 

nx = size(A,1); AA = eye(nx); 
CC = zeros(nx,N); 
for(i=1:N), 
  row = [i*nx+1:(i+1)*nx]; 
  CC(row,:)=[AA(end-nx+1:end,:)*B,CC(end-nx+1:end,1:end-1)]; 
  AA(row,:) = A*AA(end-nx+1:end,:); 
end; 

H = eye(N) + CC(end-nx+1:end,:)’*C’*C*CC(end-nx+1:end,:); 
F = CC(end-nx+1:end,:)’*C’*C*AA(end-nx+1:end,:); 
for(i=1:N), 
 row = [(i-1)*nx+1:i*nx]; 
 H = H + CC(row,:)’*C’*C*CC(row,:); 
 F = F + CC(row,:)’*C’*C*AA(row,:); 
end; 

= F :

 1 

Fragment of code to construct    AA = [I AT ! AN T ]T  and    CC = [C0
T CT ]T : 

 
Fragment of code to construct  H  and F : 

 
 
New: 
 

 

 

nx = size(A,1); AA = eye(nx); 
CC = zeros(nx,N); 
for(i=1:N), 
  row = [i*nx+1:(i+1)*nx]; 
  CC(row,:)=[AA(end-nx+1:end,:)*B,CC(end-nx+1:end,1:end-1)]; 
  AA(row,:) = A*AA(end-nx+1:end,:); 
end; 

H = eye(N) + CC(end-nx+1:end,:)’*C’*C*CC(end-nx+1:end,:); 
F = CC(end-nx+1:end,:)’*C’*C*AA(end-nx+1:end,:); 
for(i=1:N), 
 row = [(i-1)*nx+1:i*nx]; 
 H = H + CC(row,:)’*C’*C*CC(row,:); 
 F = F + CC(row,:)’*C’*C*AA(row,:); 
end; 

tmp = eye(nx);  
AA = [tmp;zeros(N*nx,nx)]; CC = zeros((N+1)*nx,N*nu); 
for i = 1:N, 
  rows = i*nx+(1:nx); 
  CC(rows,:) = [tmp*B,CC(rows-nx,1:end-nu)]; 
  tmp = A*tmp;  
  AA(rows,:) = tmp; 
end 
 

H = eye(N); F = 0; 
for i=1:N+1, 
 rows = (i-1)*nx+(1:nx); 
 H = H + CC(rows,:)’*C’*C*CC(rows,:); 
 F = F + CC(rows,:)’*C’*C*AA(rows,:); 
end 

Prediction equations

3. (a). The predictive control law is now the first element of the predicted input

sequence that is obtained by minimizing an infinite horizon predicted

cost subject to the terminal equality constraint xN |k = 0:

u∗k = arg min
uk

J =
∞∑
i=0

y2i|k + λu2i|k

subject to xN |k = 0

In this case the optimal cost J∗
(
xk
)

is a Lyapunov function since: (i)

J(x) is positive definite in x if N ≥ 2 (since (A,C) is observable); and

(ii) {u∗1|k, . . . , u∗N−1|k, 0, 0, . . .} is a feasible predicted input sequence at

k+ 1 so J∗(xk+1) ≤ J∗(xk)− y2k− λu2k. This implies x = 0 is a stable

equilibrium, while (ii) also implies that y2k + λu2k → 0 as k → ∞, and

hence the origin is asymptotically stable (since (A,C) is observable).
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(b). In practice the constraint xN |k = 0 should be avoided because:

(i) it results in poor robustness to model errors and disturbances, and

(ii) it leads to very active predicted control sequences.

Closed-loop stability can be ensured instead by using the infinite horizon

cost as described in Section 3.1 of the lecture notes (Lecture 3).

4. (a). Repeating the MPC optimization introduces feedback into the control

law (which provides some robustness to model and measurement uncer-

tainty), since the optimal predicted input sequence at time k depends

on xk. It also removes some of the suboptimality that results from

optimizing performance over a finite number of free variables.

(b). The cost over mode 2 is
∞∑
i=N

(y2i|k + u2i|k) = x>N |kQ̄xN |k

where matrix Q̄ satisfies Q̄− (A+BK)>Q̄(A+BK) = C>C+K>K.

For the given (A,B,C), K, and Q̄ we get A+BK =

[
0 0

2 0

]
and

C>C +K>K =

[
5 −1

−1 2

]
, (A+BK)>Q̄(A+BK) =

[
8 0

0 0

]
and hence Q̄− (A+BK)>Q̄(A+BK) = C>C +K>K, as required.

(c). Over the mode 2 prediction horizon, the inputs can be expressed

uN+i|k = K(A+BK)ixN |k, i = 0, 1, . . .

For this system and mode 2 feedback gain K we get (A + BK)i = 0

for all i ≥ 2, and hence K(A+BK)ix = 0 for all i ≥ 2. Therefore the

constraints need only be invoked over mode 1 and at prediction times

N and N + 1 in order to ensure that they are satisfied at every instant

on an infinite prediction horizon.
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(d). If the optimization is feasible at time k, then, since predictions at k

satisfy constraints at all future times, the input sequence defined by

ui|k+1 = u∗i+1|k for i = 0, 1, . . . must satisfy the constraints in the

optimization at time k+ 1. This sequence gives a (suboptimal) cost of

J∗k −
(
y2k + u2k

)
, and after optimization at time k + 1 we therefore get

J∗k+1 ≤ J∗k −
(
y2k + u2k

)
.

Summing this inequality for k = 0, 1, . . . gives

∞∑
k=0

(
y2k + u2k

)
≤ J∗0 − lim

k→∞
J∗k ≤ J∗0 .

(e). The bound on J∗k+1−J∗k in part (d) implies that the closed loop system

is stable (i.e. x = 0 is locally asymptotically stable) if the pair (A,C)

is observable, which is the case here since CA = [−2 2] is not parallel

to C = [1 1].

5. (a). In a dual mode prediction strategy, terminal constraints ensure that

predictions satisfy the system input and state constraints over the infi-

nite horizon of mode 2 (i.e. at prediction times i = N,N+1, . . .). This

provides a recursive guarantee of feasibility by ensuring that, at each

sampling instant k, the tail of the predicted input and state sequences

that solve the constrained MPC optimization at time k will satisfy the

constraints of the MPC optimization at time k+ 1. This makes it pos-

sible to derive a guarantee that the optimal predicted cost decreases

with k, and hence a guarantee of closed loop stability.

A terminal constraint set S must be:

– invariant under the mode 2 feedback law, i.e. xk+i ∈ S implies

xk+i+1 ∈ S, for all i ≥ N .

– feasible, i.e. state constraints are instantaneously satisfied and input

constraints are satisfied by the mode 2 feedback law, for all x ∈ S.
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(b). (i). It is easy to verify invariance here because A + BK is diagonal.

Specifically, S = {x : |[x]1+[x]2| ≤ 1 , |[x]1−[x]2| ≤ 1} is invariant

for xk+1 = (A + BK)xk because A + BK = diag{0.5,−0.3} so

the vertices of S: v = [±1 0]>, [0 ± 1]> satisfy (A + BK)v =

[±0.5 0]>, [0 ∓ 0.3]> ∈ S. Furthermore it is obvious that S is

feasible with respect to the state constraints.

(ii). The maximal terminal set is obtained by checking the system con-

straints over a sufficiently long constraint checking horizon horizon

Nc, i.e. for some finite Nc:

Smax = {x : (A+BK)ix ∈ X , i = 0, 1, . . . Nc − 1}

where X = {x : |[x]1+[x]2| ≤ 1 , |[x]1−[x]2| ≤ 1} is the constraint

set for the system state. The minimum allowable value for Nc can

be found by checking whether (A + BK)M+1x ∈ X for all x such

that (A + BK)ix ∈ X for i = 0, 1, . . .M . If this is true, then

Nc = M , otherwise Nc > M . For given M this condition can be

checked by solving a pair of linear programs:

z = max{max
x

[1 1](A+BK)M+1x, max
x

[1 −1](A+BK)M+1x}

where each of the two maximizations over x is performed subject to

(A+BK)ix ∈ X , i = 0, . . .M , and then checking whether z < 1.

(c). Increasing the mode 1 horizon N results in:

• improved performance, since the optimal value of predicted cost is

non-increasing with increasing N (but note that, for each initial con-

dition x(0), there exists a finite value, N∞, such that no improve-

ment in closed loop performance can be obtained with N > N∞);

• larger operating region, since the set of feasible initial conditions is

non-decreasing with increasing N ;

• higher computational load, since the number of optimization vari-

ables increases.
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Hence choosing N involves a trade-off between performance and com-

putation.

Integral action and disturbances

6. (a). Using either xss = (I − A−BK)−1Bww or

ẏss = 0 =⇒ uss =
mg

KV
=⇒ xss =

[
mg/(KVK1)

0

]

(where K1 = −66.0), we get the maximum steady state error as:

w = m = 0.5 kg =⇒ ess = −0.0106 m

(b). Augment the model to include integrated error v:

ξk+1 =

[
A 0

C I

]
ξk +

[
B

0

]
uk, ξk =

[
xk

vk

]

and modify the performance index to include a term penalising v:

Jk =
∞∑
i=0

(
e2k+i + λu2k+i + λIv

2
k+i

)
.

Taking λ = 10−4, and choosing e.g. λI = 1, this results in the LQ-

optimal feedback law uk = Kξξk, with Kξ = −
[
201.4 29.6 48.2

]
.

Figure 1 shows the closed loop responses for m = 0.5 kg, when the

platform is released from rest with e(0) = 0.
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Figure 1. Closed loop platform responses for unconstrained LQ-optimal

feedback without integral action (left) and with integral action (right)

(c). (i). The mode 2 feedback law is uk = Kξξk, where Kξ is the LQ-

optimal gain for the unconstrained minimization of J . The predicted

cost can be written

Jk =
∞∑
i=0

(
‖ξi|k‖2Qξ + λu2i|k

)
, Qξ =

[
C>C 0

0 1

]

Therefore, if P is the solution of the Lyapunov equation:

P −

([
A 0

C I

]
+

[
B

0

]
Kξ

)>
P

([
A 0

C I

]
+

[
B

0

]
Kξ

)

=

[
C>C 0

0 1

]
+ λK>ξ Kξ
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then ξ>N |kPξN |k is is equal to the predicted cost over mode 2 for the

nominal case of w = 0, and hence

Jk =
N−1∑
i=0

(
‖ξi|k‖2Qξ + λu2i|k

)
+ ‖ξN |k‖2P .

(ii). In order to ensure robust constraint satisfaction (and hence guaran-

tee that the MPC optimization remains feasible if it is initially feasible),

the constraints must be imposed on the predictions that correspond to

the worst-case disturbance values (i.e. w = 0 and w = 0.5). This

can be achieved simply by generating two sets of predictions (i.e. the

predictions that are obtained with w = 0 and w = 0.5), and ensuring

that ui|k lies in the allowable range for all i = 0, 1, . . . in both cases.

Since the open loop system is not strictly stable (it has repeated poles

on the unit circle), the two sets of predictions will diverge over the

mode 1 prediction horizon if the prediction dynamics are open loop in

mode 1. This makes it difficult to satisfy constraints, and in fact it

can be shown that the implied optimization is infeasible for all initial

conditions whenever N ≥ 2.

To overcome this problem it is necessary to pre-stabilize the mode 1

prediction dynamics by introducing feedback into mode 1 predictions:

ui|k =

Kξξi|k + ci|k i = 0, . . . , N − 1

Kξξi|k i = N,N + 1, . . .

where ck = {c0|k, . . . , cN−1|k} are the degrees of freedom in predictions.

With this modification the input predictions corresponding to w = 0

must lie between the solid lines in Figure 2 in order to satisfy the

input constraints robustly. Since these upper and lower bounds do not

overlap, the problem is now feasible for any N for some initial conditions

ξ(0).
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Figure 2. Bounds on nominal input predictions ensuring |ui|k| ≤ 1 for all

values of disturbance in the range 0 ≤ w ≤ 0.5

7. Robust constraint satisfaction for all possible disturbance values implies

recursive feasibility, so the robust constraints will be feasible at all times if

they are initially feasible.

The optimal predicted cost is not necessarily always decreasing over time

since w = 0 is assumed in evaluating the cost, and therefore (asymptotic)

stability cannot be inferred from the optimal cost.

However c0|k necessarily converges to zero asymptotically, and it follows

that the closed-loop response will be stable whenever the MPC problem is

initially feasible.

Furthermore, if stable, the response must have zero steady-state error since

vk must be finite in the steady state. This is illustrated in Figure 3 (compare

the unconstrained responses of Figure 1 for same initial conditions).
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Figure 3. Closed-loop platform response under the MPC law that incorpo-

rates robust constraints and integral action.

8. (a). Two main advantages:

(i). The receding horizon optimization is repeated at each time step,

and this provides feedback (since the optimal predicted input se-

quence at k depends on the state xk), reducing the effect of the

uncertainty in wk.

(ii) Due to the presence of constraints, the optimization has to be per-

formed over a finite number of free variables. Using a receding

horizon optimization reduces the degree of suboptimality with re-

spect to the infinite horizon optimal control problem.
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(b). (i). From xk+1 = xk + uk − wk and ek = xk − x∗ we get the error

dynamics ek+1 = ek + uk − wk. Introducing the feedback law

uk = ŵ− ek and assuming wk = ŵ gives ek = 0 for all k ≥ 1, and

since e0 is independent of u0, this necessarily provides the minimum

cost: J0 = e20.

(ii). The mode 2 feedback law ui|k = ŵ − ei|k for i ≥ N gives ei|k = 0

for all i ≥ N . The cost is then Jk =
∑∞

i=0 e
2
i|k =

∑N−1
i=0 e2i|k + e2N |k.

(iii). The constraints for the infinite prediction horizon are the union of

the constraints for the horizons of mode 1 and mode 2.

For i = 0, 1, . . . , N − 1: 0 ≤ ui|k ≤ U and 0 ≤ xi|k ≤ X.

For i = N,N + 1, . . .: ui|k = ŵ−ei|k implies ei|k = 0 for i ≥ N+1

and hence xi|k = x∗ and ui|k = ŵ for all i ≥ N + 1.

Assuming the steady state to be feasible (i.e. 0 ≤ ŵ ≤ U and

0 ≤ x∗ ≤ X), the constraint checking horizon is therefore Nc = 1

and the mode 2 constraints are

0 ≤ xN |k ≤ X and 0 ≤ uN |k = ŵ − eN |k ≤ U,

or equivalently

max{0, ŵ + x∗ − U} ≤ xN |k ≤ min{X, ŵ + x∗}.

(c). Predictions: ui|k = ŵ − ei|k + ci|k, where ci|k for i = 0, . . . , N − 1 are

free variables (to be optimized online) and ci|k = 0 for i ≥ N . This

gives pre-stabilized predictions, thus reducing the effect of the unknown

disturbance wk+i−ŵ on the predicted sequence: ei+1|k = ŵ−wi|k+ci|k,

i = 0, 1, . . ..


