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1 Introduction

1.1 Scope and objectives

The course aims to provide an overview of techniques for analysis and control

design for nonlinear systems. Whereas linear system control theory is largely

based on linear algebra (eg. when determining the behaviour of solutions to

linear differential equations) and complex analysis (eg. when predicting system

behaviour from transfer functions), the broader range of behaviour exhibited

by nonlinear systems requires a wider variety of techniques. The course gives

an introduction to some of the most useful and commonly used tools for deter-

mining system behaviour from a description in terms of differential equations.

Two main topics are covered:

• Lyapunov stability — An intuitive approach to analyzing stability and

convergence of dynamic systems without explicitly computing the solu-

tions of their differential equations. This method forms the basis of much

of modern nonlinear control theory and also provides a theoretical justifi-

cation for using local linear control techniques.

• Passivity and linearity — These are properties of two important classes

of dynamic system which can simplify the application of Lyapunov stabil-

ity theory to interconnected systems. In this course we use the stability

properties of linear and passive systems to derive the circle criterion, which

provides an extension of the Nyquist criterion to nonlinear systems con-

sisting of linear and nonlinear subsystems.

The theory discussed in this course is the basis of control design methods

covered in C21, C20 and elsewhere. Some important topics not covered in

this course are: input-output stability theory (which investigates stability using

functional analysis) and differential geometry (which extends observability and

controllability and provides the basis for feedback linearization).
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2 Introduction

At the end of the course you should be able to:

• Understand the basic Lyapunov stability definitions lecture 1

• Analyse stability using the linearization method lecture 2

• Analyse stability by Lyapunov’s direct method lecture 2

• Analyse convergence using Barbalat’s Lemma lecture 3

• Use invariant sets to determine regions of attraction lecture 3

• Construct Lyapunov functions for linear and passive systems lecture 4

• Use the circle criterion to analyse the stability of systems with static

nonlinearities lecture 4

1.2 Books

These notes are self-contained and they also contain some non-examinable

background material (these sections are indicated in the text). For a full

understanding of the course it will be helpful to read more detailed treatments

given by textbooks on nonlinear control. Throughout these notes there are

references to additional reading material.

1. J.-J. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, 1991.

Most of the material covered by the course is in chapters 3 and 4.

2. K.J. Astrom and R.M. Murray, Feedback Systems: an introduction for

scientists and engineers, Princeton University Press, 2008.

Chapter 4 introduces Lyapunov stability analysis.

3. M. Vidyasagar, Nonlinear Systems Analysis (2nd ed.), Prentice-Hall, 1993.

Chapter 5 discusses Lyapunov stability analysis. Chapter 2 has useful

background material on nonlinear ODEs.

4. H.K. Khalil, Nonlinear Systems (2nd ed.), Prentice-Hall, 1996.

Chapters 1, 3, 4, 10 and 11 are relevant to this course.
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1.3 Motivation 1

There already exists a large amount of theory concerning control of linear

systems, including robust and optimal control for multivariable linear systems

of arbitrarily high order. So why bother designing controllers explicitly for

nonlinear systems?

The main justification for nonlinear control is based on the observations:

• All physical systems are nonlinear. Apart from limitations on standard

linear modeling assumptions such as Hooke’s law, linearity of resistors

and capacitors etc., nonlinearity invariably appears due to friction and

heat dissipation effects.

• Linearization is approximate. Linear descriptions of physical processes are

necessarily local (ie. accurate only within a restricted region of operation),

and may be of limited use for control purposes.

Nonlinear control techniques are therefore useful when: (i) the required range

of operation is large; (ii) the linearized model is inadequate (for example, lin-

earizing the first order system ẋ = xu about x = 0, u = 0 results in the

uncontrollable system ẋ = 0). Further reasons for considering nonlinear con-

trollers are: (iii) the ability of robust nonlinear controllers to tolerate large

variations in uncertain system parameters; (iv) the simplicity of nonlinear con-

trol designs, which are often based on the physics of the process.

Linear vs. nonlinear system behaviour. The analysis and control of non-

linear systems requires a different set of tools than can be used in the case of

linear systems. In particular, for the linear system:

ẋ = Ax+Bu

where x is the state and u the control input, for the case of u = 0 we have:

– x = 0 is the unique equilibrium point (unless A is singular)

– stability is unaffected by initial conditions

and for u 6= 0:

1See Slotine and Li §1.2 pp4–12, for a more detailed discussion.
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– x remains bounded whenever u is bounded if ẋ = Ax is stable

– if u(t) is sinusoidal, then in steady state x(t) contains sinusoids of the

same frequency as u

– if u = u1 + u2, then x = x1 + x2.

However none of these properties is in general true for nonlinear systems.

Example 1.1. The system:

ẍ+ ẋ+ k(x) = u, k(x) = x(x2 + 1) (1.1)

is a model of displacement x(t) in a mass-spring-damper system subject to an

externally applied force u(t). The nonlinearity appears in the spring term k(x),

which stiffens with increasing |x| (figure 1), and might therefore represent the

effect of large elastic deflections.

−2 −1 0 1 2
−10

−5

0

5

10

x

k(
x)

Figure 1: Spring characteristics k(x) in (1.1).

Figure 2 shows the variation of x with time t in response to step changes in

input u. Clearly the responses to positive steps are more oscillatory than those

for negative step changes in u. This reduction in apparent damping ratio is

due simply to the increase in stiffness of the nonlinear spring for large |x|. Note

also that the steady state value of x for u = 5 is not 10 times that for u = 50,

as would be expected in the linear case. ♦
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Figure 2: Response to steps in u of 5 (solid line), and 50 (dotted line).

Example 1.2. Van der Pol’s equation:

ẍ+ µ(x2 − 1)ẋ+ x = 0, µ > 0, (1.2)

is a well-known example of a nonlinear system exhibiting limit cycle behaviour.

In contrast to the limit cycles that occur in marginally stable linear systems,

the amplitudes of limit cycle oscillations in nonlinear systems are independent

of initial conditions. As a result the state trajectories of (1.2) all tend towards

a single closed curve (the limit cycle), which can be seen in figure 3b. ♦
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Figure 3: Limit cycle of Van der Pol’s equation (1.2) with µ = 0.5. (a)

Response for initial condition x(0) = dx/dt(0) = 0.05. (b) State trajectories.
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2 Lyapunov stability

Throughout these notes we use state equations of the form

ẋ = f(x, u, t)

{
x : state variable

u : control input
(2.1)

to represent systems of coupled ordinary differential equations. You should

be familiar with the concept of state space from core course lectures, but to

refresh your memory, suppose an nth-order system is given by

y(n) = h
(
y, ẏ, . . . y(n−1), u, t

)
(2.2)

(where y(i) = diy/dti, i = 1, 2, . . .), for some possibly nonlinear function h.

Then an n-dimensional state vector x can be defined for example via

x =


x1

x2
...

xn−1

xn

 ;

x1 = y

x2 = ẏ
...

xn−1 = y(n−2)

xn = y(n−1)

and (2.2) is equivalent to

ẋ1 = x2

ẋ2 = x3

...

ẋn−1 = xn

ẋn = h(x1, x2, . . . xn, u, t).

This now has the form of (2.1), with

f(x, u, t) =


x2

x3

· · ·
xn

h(x1, . . . xn, u, t)

 .
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We make a distinction between system dynamics which are invariant with time

and those which depend explicitly on time.

Definition 2.1 (Autonomous/non-autonomous dynamics). The system (2.1)

is autonomous if f does not depend explicitly on time t, ie. if (2.1) can be

re-written ẋ = f1(x) for some function f1. Otherwise the system (2.1) is

non-autonomous.

For example, the closed-loop system formed by ẋ = f(x, u) under time-

invariant feedback control u = u(x) is given by ẋ = f
(
x, u(x)

)
, and is

therefore autonomous. However a system ẋ = f(x, u) under time-varying

feedback u = u(x, t) (which would be needed if x(t) were required to follow

a time-varying target trajectory) has closed-loop dynamics ẋ = f
(
x, u(x, t)

)
which are therefore non-autonomous.

As stated earlier, a nonlinear system may have different stability properties

for different initial conditions. It is therefore usual to consider stability and

convergence with respect to an equilibrium point, defined as follows.

Definition 2.2 (Equilibrium). A state x∗ is an equilibrium point if x(t0) = x∗

implies that x(t) = x∗ for all t ≥ t0.

Clearly the equilibrium points of the forced system (2.1) are dependent on

the control input u(t). In fact the problem of controlling (2.1) so that x(t)

converges to a given target state xd is equivalent to finding a control law u(t)

which forces xd to be a stable equilibrium (in some sense) of the closed-loop

system. Thus it is convenient consider the equilibrium points of an unforced

system:

ẋ = f(x, t), (2.3)

(which could of course be obtained from a forced system under a specified

control input u(t)). By definition, an equilibrium point x∗ of (2.3) is a solution

of

f(x∗, t) = 0.

Note that solving for x∗ may not be trivial for general f . The remainder of

section 2 considers the stability of equilibrium points of (2.3). Following the
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usual convention, we define f in (2.3) so that the origin x = 0 is an equilibrium

point, ie. so that f(0, t) = 0 for all t.2

The origins of modern stability theory date back to Lagrange (1788), who

showed that, in the absence of external forces, an equilibrium of a conserva-

tive mechanical system is stable if it corresponds to a local minimum of the

potential energy stored in the system. Stability theory remained restricted

to conservative dynamics described by Lagrangian equations of motion until

1892, when the Russian mathematician A. M. Lyapunov developed methods

applicable to arbitrary differential equations. Lyapunov’s work was largely un-

known outside Russia until about 1960, when it received widespread attention

through the work of La Salle and Lefschetz. With several refinements and mod-

ifications, Lyapunov’s methods have become indispensable tools in nonlinear

system control theory.

2.1 Stability definitions 3

As might be expected, the most basic form of stability is simply a guarantee

that the state trajectories starting from points in the vicinity of an equilibrium

point remain close to that equilibrium point at all future times. In addition to

this we consider the stronger properties of asymptotic and exponential stability,

which ensure convergence of trajectories to an equilibrium point. Although

the definitions discussed in this section are mostly intuitively obvious, they are

often useful in their own right, particularly in cases where the stability theorems

described in section 2.3 cannot be applied directly.

Definition 2.3 (Stability). The equilibrium x = 0 of (2.3) is stable if, for

each time t0, and for every constant R > 0, there exists some r(R, t0) > 0

such that

‖x(t0)‖ < r =⇒ ‖x(t)‖ < R, ∀t ≥ t0.

(Here ‖·‖ can be any vector norm.) It is uniformly stable if r is independent

of t0. The equilibrium is unstable if it is not stable.

2Any equilibrium x∗ can be translated to the origin by redefining the state x as x′ = x− x∗.
3See Slotine and Li §3.2 pp47–52 and §4.1 pp101–105, or Vidyasagar §5.1 pp135–147.
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An equilibrium is therefore stable if x(t) can be contained within an arbitrarily

small region of state space for all t ≥ t0 provided x(t0) is sufficiently close to

the equilibrium point (see figure 4).

0
r

R

x(t0)

x(t)

Figure 4: Stable equilibrium.

Note that:

1. Equilibrium points of stable autonomous systems are necessarily uniformly

stable. This is because the state trajectories, x(t), t ≥ t0, of an au-

tonomous system depend only on initial condition x(t0) and not on initial

time t0.

2. An equilibrium point x = 0 may be unstable even though trajectories

starting from points close to x = 0 do not tend to infinity. This is the

case for Van der Pol’s equation (example 1.2), which has an unstable

equilibrium at the origin. (All trajectories starting from points within the

limit cycle of figure 3b eventually join the limit cycle, and therefore it is

not possible to find r > 0 in definition 2.3 whenever R is small enough

that some points on the closed curve of the limit cycle lie outside the set

of points x satisfying ‖x‖ < R.)

It is also worth noting that stability (as opposed to uniform stability) is a very

weak condition which implies that an equilibrium point actually tends towards

instability as t → ∞. This is because it is only necessary to specify r in

definition 2.3 as a function of t0 if, for fixed R, r(R, t0) tends to zero as a

function of t0. Otherwise r(R) could be specified independently of t0 as the

minimum value of r(R, t0) over all t0.
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Definition 2.4 (Asymptotic stability). The equilibrium x = 0 of (2.3) is

asymptotically stable if: (a) it is stable, and (b) for each time t0 there

exists some r(t0) > 0 such that

‖x(t0)‖ < r =⇒ ‖x(t)‖ → 0 as t→∞.

It is uniformly asymptotically stable if it is asymptotically stable and both

r and the rate of convergence in (b) are independent of t0.

Asymptotic stability therefore implies that the trajectories starting from any

point within some region of state space containing the equilibrium point remain

bounded and converge asymptotically to the equilibrium (see figure 5).

0

r
x(t0)

x(t)

Figure 5: Asymptotically stable equilibrium.

Note that:

1. An asymptotically stable equilibrium of an autonomous system is neces-

sarily uniformly asymptotically stable.

2. The convergence condition (b) of definition 2.4 is equivalent to requiring

that, for every constant R > 0 there exists a T (R, r, t0) such that

‖x(t0)‖ < r =⇒ ‖x(t)‖ < R, ∀t ≥ t0 + T,

and the convergence rate is independent of t0 if T is independent of t0.
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Example 2.5. The first order system

ẋ = − x

1 + t

has general solution

x(t) =
1 + t0
1 + t

x(t0), t ≥ t0.

Here x = 0 is uniformly stable (check the condition of definition 2.3 for the

choice r = R), and all trajectories converge asymptotically to 0; therefore the

origin is an asymptotically stable equilibrium. However the rate of convergence

is dependent on initial time t0 — if ‖x(t0)‖ < r then the condition ‖x(t)‖ <
R, ∀t ≥ t0 + T requires that T > (1 + t0)(r − R)/R, which, for fixed R,

cannot be bounded by any finite constant for all t0 ≥ 0. Hence the origin is

not uniformly asymptotically stable. ♦

Definition 2.6 (Exponential stability). The equilibrium x = 0 of (2.3) is

exponentially stable if there exist constants r, R, α > 0 such that

‖x(t0)‖ < r =⇒ ‖x(t)‖ ≤ Re−αt, ∀t ≥ t0.

Note that:

1. Asymptotic and exponential stability are local properties of a dynamic

system since they only require that the state converges to zero from a

finite set of initial conditions (known as a region of attraction): x where

‖x‖ < r.

2. If r can be taken to be infinite in definition 2.4 or definition 2.6, then

the system is respectively globally asymptotically stable or globally

exponentially stable.4

3. A strictly stable linear system is necessarily globally exponentially stable.

4There is no ambiguity in talking about global stability of the overall system rather than global

stability of a particular equilibrium point since a globally asymptotically or globally exponentially

stable system can only have a single equilibrium point.
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2.2 Lyapunov’s linearization method 5

In many cases it is possible to determine whether an equilibrium of a nonlinear

system is locally stable simply by examining the stability of the linear approxi-

mation to the nonlinear dynamics about the equilibrium point. This approach

is known as Lyapunov’s linearization method since its proof is based on the

more general stability theory of Lyapunov’s direct method. However the idea

behind the approach is intuitively obvious: within a region of state space close

to the equilibrium point, the difference between the behaviour of the nonlinear

system and that of its linearized dynamics is small since the error in the linear

approximation is small for states close to the equilibrium.

The linearization of a system

ẋ = f(x), f(0) = 0, (2.4)

about the equilibrium x = 0 is derived from the Taylor’s series expansion of f

about x = 0. Provided f(x) is continuously differentiable6 we have

ẋ = Ax+ f(x),

where A is the Jacobian matrix of f evaluated at x = 0:

A =

[
∂f

∂x

]
x=0

=


∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn...
...

...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


x=0

, (2.5)

and by Taylor’s theorem the sum of higher order terms, f , satisfies

lim
x→0

‖f(x)‖2

‖x‖2
= 0, ∀t ≥ 0. (2.6)

Neglecting higher order terms gives the linearization of (2.4) about x = 0:

ẋ = Ax. (2.7)

5See Slotine and Li §3.3 pp53–57 or Vidyasagar §5.5 pp209–219.
6A function is continuously differentiable if it is continuous and has continuous first derivatives.
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The stability of the linear approximation can easily be determined from the

eigenvalues of A. This is because the general solution of a linear system can

be computed explicitly:

ẋ = Ax =⇒ x(t) = eA(t−t0)x(t0),

and it follows that the linear system is strictly stable if and only if all eigenvalues

of A have negative real parts (or marginally stable if the real parts of some

eigenvalues of A are equal to zero, and the rest are negative).

Theorem 2.7 (Lyapunov’s linearization method). For the nonlinear sys-

tem (2.4), suppose that f is continuously differentiable and define A as

in (2.5). Then:

• x = 0 is an exponentially stable equilibrium of (2.4) if all eigenvalues

of A have negative real parts.

• x = 0 is an unstable equilibrium of (2.4) if A has at least one eigenvalue

with positive real part.

The proof of the theorem makes use of (2.6), which implies that the error

f in the linear approximation to f converges to zero faster than any linear

function of x as x tends to zero. Consequently the stability (or instability) of

the linearized dynamics implies local stability (or instability) of the equilibrium

point of the original nonlinear dynamics.

Note that:

1. The linearization approach concerns local (rather than global) stability.

2. If the linearized dynamics are marginally stable then the equilibrium of

the original nonlinear system could be either stable or unstable (see ex-

ample 2.8 below). It is not possible to draw any conclusions about the

stability of the nonlinear system from the linearization in this case since

the local stability of the equilibrium could be determined by higher order

terms that are neglected in the linear approximation.

3. The above analysis can be extended to non-autonomous systems of the

form (2.3). However the linearized system is then time-varying (ie. of
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the form ẋ = A(t)x), and its stability is therefore more difficult to deter-

mine in general. In this case the equilibrium of the nonlinear system is

asymptotically stable if the linearized dynamics are asymptotically stable.

Example 2.8. Consider the following first order system

ẋ = −αx|x|

where α is a constant. For α > 0, the derivative ẋ(t) is of opposite sign to

x(t) at all times t, and the system is therefore globally asymptotically stable.

If α < 0 on the other hand, then ẋ(t) has the same sign as x(t) for all t,

and in this case the system is unstable (in fact the general solution shows that

|x(t)| → ∞ as t → α−1(t0 + 1/|x(t0)|)). However the linearized system is

given by

ẋ = 0

which is marginally stable irrespective of the value of α, and therefore contains

no information on the stability of the nonlinear system. ♦

The linearization of a forced system ẋ = f(x, u) under a given feedback control

law u = u(x) is most easily computed by directly neglecting higher order terms

in the Taylor’s series expansions of f and u about x = 0, u = 0. Thus

ẋ ≈ Ax+Bu, A =

[
∂f

∂x

]
x,u=0

B =

[
∂f

∂u

]
x,u=0

(2.8a)

u ≈ Fx, F =

[
∂u

∂x

]
x,u=0

(2.8b)

and the linearized dynamics are therefore

ẋ = (A+BF )x. (2.9)

The implication of Lyapunov’s linearization method is that linear control tech-

niques can be used to design locally stabilizing control laws for nonlinear sys-

tems via linearization about the equilibrium of interest. All that is required is

a linear control law u = Fx, computed using the linearized dynamics (2.8a),

which forces the linearized closed-loop system (2.9) to be strictly stable. How-

ever this approach is limited by the local nature of the linearization process —
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there is no guarantee that the resulting linear control law stabilizes the non-

linear system everywhere within the desired operating region of state space,

which may be much larger than the region on which the linear approximation

to the nonlinear system dynamics is accurate.

2.3 Lyapunov’s direct method 7 8

The aim of Lyapunov’s direct method is to determine the stability proper-

ties of an equilibrium point of an unforced nonlinear system without solving

the differential equations describing the system. The basic approach involves

constructing a scalar function V of the system state x, and considering the

derivative V̇ of V with respect to time. If V is positive everywhere except at

the equilibrium x = 0, and if furthermore V̇ ≤ 0 for all x (so that V cannot

increase along the system trajectories), then it is possible to show that x = 0

is a stable equilibrium. This is the main result of Lyapunov’s direct method,

and a function V with these properties is known as a Lyapunov function. By

imposing additional conditions on V and its derivative V̇ , this result can be

extended to provide criteria for determining whether an equilibrium is asymp-

totically or exponentially stable both locally and globally.

Motivation

The function V can be thought of as a generalization of the idea of the stored

energy in a system. Consider for example the second order system:

mÿ + c(ẏ) + k(y) = 0


m > 0

c(0) = 0, sign
(
c(ẏ)

)
= sign (ẏ)

k(0) = 0, sign
(
k(y)

)
= sign (y)

(2.10)

where y is the displacement of a mass m, and c(ẏ), k(y) are respectively

nonlinear damping and spring forces acting on the mass (figure 6).

7See Slotine and Li §3.4 pp57–68 and §4.2 pp105–113 or Vidyasagar §5.3 pp157–176.
8The proofs of the various results given in this section are intended to be conceptual rather than

rigorous. For a more technical treatment see eg. Vidyasagar, though this is not necessary for the

level of understanding required in this course.
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m

k(y)

c(ẏ)
-
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-

-

6

6

y

ẏ

k(y)

c(ẏ)

0

0

Figure 6: Mass, spring and damper.

From the rate of change of stored energy it is easy to deduce that the equi-

librium y = ẏ = 0 is stable without explicit knowledge of the functions k and

c. When released from non-zero initial conditions energy is transfered between

the spring and the mass (since the spring force opposes the displacement of

the mass), but the total stored energy decreases monotonically over time due

to dissipation in the damper (since the damping force opposes the velocity of

the mass). It is also intuitively obvious that a small value for the stored energy

at time t corresponds to small values of y(t) and ẏ(t), and therefore y = ẏ = 0

must be a stable equilibrium.

To make this argument more precise, let V be the energy stored in the system

(ie. the sum of the kinetic energy of the mass and the potential energy of the

spring):

V (y, ẏ) =
1

2
mẏ2 +

∫ y

0

k(y) dy. (2.11)

Here k(y) has the same sign as y, and V is therefore strictly positive unless

y = ẏ = 0 (in which case V = 0). It follows that (y2+ ẏ2)1/2 can only exceed a

given bound R if V increases beyond some corresponding bound V . However,

using the chain rule and the system dynamics (2.10), the derivative of V with

respect to time is given by

V̇ (y, ẏ) =
1

2
m
d

dẏ

[
ẏ2
]
ÿ +

d

dy

[∫ y

0

k(y) dy
]
ẏ

= mẏÿ + k(y)ẏ

= −c(ẏ)ẏ
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which implies that V̇ ≤ 0 due to the condition on the sign of c(ẏ) in (2.10).

Hence V decreases monotonically along system trajectories. It is therefore clear

that if the initial conditions y(t0), ẏ(t0) are sufficiently close to the equilibrium

that
(
y2(t0) + ẏ2(t0)

)1/2
< r, where r satisfies

(y2 + ẏ2)1/2 < r =⇒ V (y, ẏ) < V ,

then (y2 + ẏ2)1/2 cannot exceed the bound R at any future time t ≥ t0, which

implies that the equilibrium is uniformly stable in the sense of definition 2.3.

Figure 7 illustrates the relationship between the constants V , r and R. To

simplify the figure we have assumed that V has radial symmetry (ie. V (y, ẏ) =

V (y2 + ẏ2)).

V

V

0 r R (y2 + ẏ2)1/2

Figure 7: Storage function V and parameters V , r and R.

Autonomous systems

Positive definite functions. The argument used above to show that the

equilibrium of (2.10) is stable relies on the fact that a bound on V implies a

corresponding bound on the norm of the state vector and vice-versa. This is

the case for a general continuous function V of the state x provided V has

the property that

x 6= 0 ⇐⇒ V (x) > 0,

x = 0 ⇐⇒ V (x) = 0.
(2.12)
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A continuous function with this property is said to be positive definite.9

Alternatively, if V (x) is continuous and (2.12) holds for all x such that ‖x‖ <
R0 for some R0 > 0, then V is locally positive definite (or positive definite

for ‖x‖ < R0).

Derivative of V (x) along system trajectories. If x satisfies the differential

equation ẋ = f(x), then the time-derivative of a continuously differentiable

scalar function V (x) is given by

V̇ (x) = ∇V (x)ẋ = ∇V (x)f(x), (2.13)

where ∇V (x) is the gradient of V (expressed as a row vector) with respect to

x evaluated at x. The expression (2.13) gives the rate of change of V as x

moves along a trajectory of the system state, and V̇ is therefore known as the

derivative of V along system trajectories.

With these definitions we can give the general statement of Lyapunov’s direct

method for autonomous systems.

Theorem 2.9 (Stability/asymptotic stability for autonomous systems). If

there exists a continuously differentiable scalar function V (x) such that:

(a). V (x) is positive definite

(b). V̇ (x) ≤ 0

for all x satisfying ‖x‖ < R0 for some constant R0 > 0, then the equilibrium

x = 0 is stable. If, in addition,

(c). −V̇ (x) is positive definite

whenever ‖x‖ < R0, then x = 0 is asymptotically stable.

The first part of this theorem can be proved by showing that it is always

possible to find a positive scalar r which ensures that, for any given R > 0,

x(t) is bounded by ‖x(t)‖ < R for all t ≥ t0 whenever the initial condition

satisfies ‖x(t0)‖ < r. To do this, first choose R < R0 and define V as the

minimum value of V (x) over all x such that ‖x‖ = R (figure 8a). Then a

trajectory x(t) can escape the region on which ‖x‖ < R only if V
(
x(t)

)
≥ V

9Similarly, V is negative definite if −V is positive definite.
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for some t ≥ t0. But condition (a) implies that there exists a positive r < R

for which V (x) < V whenever ‖x‖ < r, whereas condition (b) ensures that

V
(
x(t)

)
decreases over time if ‖x(t)‖ < R. It follows that V

(
x(t)

)
cannot

exceed V for all t ≥ t0 if the initial state satisfies ‖x(t0)‖ < r, and the state

x(t) cannot therefore leave the region on which ‖x‖ < R. For the case of

R ≥ R0, simply repeat this argument with R replaced by R0.

0
r

R

R0

V (x) = V
S
S
Sw

0

R′

r = ‖x(t0)‖

V (x) = V
�
��


(a) (b)

Figure 8: Level sets of V (x) in state space.

The second part concerning asymptotic stability can be proved by contra-

diction. Suppose that the origin is not asymptotically stable, then for any

given initial condition x(t0) the value of ‖x(t)‖ must remain larger than some

positive number R′ < ‖x(t0)‖. Conditions (a) and (c) therefore imply that

V
(
x(t)

)
> V and V̇

(
x(t)

)
< −W at all times t ≥ t0, for some constants

V ,W > 0 (figure 8b). But this is a contradiction since V
(
x(t)

)
must de-

crease to a value less than V in a finite time smaller than [V
(
x(t0)

)
− V ]/W

if V̇
(
x(t)

)
< −W for all t ≥ t0.
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Non-autonomous systems 10

The discussion so far has concerned only autonomous systems (systems with

dynamics of the form ẋ = f(x)). Extensions to non-autonomous systems

(ẋ = f(x, t)) are straightforward, but the situation is complicated by the fact

that a Lyapunov function for non-autonomous dynamics may need to be time-

varying, ie. of the form V (x, t). For completeness this section gives some

results on non-autonomous system stability.

Positive definite time-varying functions. To extend the definition of a

positive definite function to the case of time-varying functions, we simply state

that V (x, t) is positive definite if there exists a time-invariant positive definite

function V0(x) satisfying

V (x, t) ≥ V0(x), ∀t ≥ t0, ∀x. (2.14)

Similarly, V is locally positive definite if V (x, t) is bounded below by a locally

positive definite time-invariant function V0(x) for all t ≥ t0.

Decrescent functions. Non-autonomous systems differ from autonomous

systems in that the stability of an equilibrium may be uniform or non-uniform

(recall that the stability properties of autonomous systems are necessarily uni-

form). In order to ensure uniform stability, a Lyapunov function V for a non-

autonomous system must also be decrescent, which requires that

V (x, t) ≤ V0(x), ∀t ≥ t0, ∀x (2.15)

for some time-invariant positive definite function V0(x).

Derivative of V (x, t) along system trajectories. If x(t) satisfies ẋ =

f(x, t), then the derivative with respect to t of a continuously differentiable

function V (x, t) can be expressed

V̇ (x, t) =
∂V

∂t
(x, t) +∇V (x)ẋ =

∂V

∂t
(x, t) +∇V (x)f(x, t). (2.16)

The appearance here of the partial derivative of V with respect to t is due to

the explicit dependence of V on time.
10The discussion in this section of Lyapunov’s direct method for non-autonomous systems is non-

examinable and is provided as background material
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The main result of Lyapunov’s direct method for non-autonomous systems can

be stated in terms of these definitions as follows.

Theorem 2.10 (Stability/asymptotic stability for non-autonomous systems).

If there exists a continuously differentiable scalar function V (x, t) such that:

(a). V (x, t) is positive definite

(b). V̇ (x, t) ≤ 0

for all x satisfying ‖x‖ < R0 for some constant R0 > 0, then the equilibrium

x = 0 is stable. If, furthermore,

(c). V (x, t) is decrescent

then x = 0 is uniformly stable. If, in addition to (a), (b), and (c),

(d). −V̇ (x, t) is positive definite

whenever ‖x‖ < R0, then x = 0 is uniformly asymptotically stable.

This theorem can be proved in a similar way to theorem 2.9. The only dif-

ference in the first part concerning stability is that here the definitions of the

constants V and r must hold for all t ≥ t0 (ie. so that V is the minimum of

V (x, t) for all x such that ‖x‖ = R and all t ≥ t0, and likewise V (x, t) < V

for all x such that ‖x‖ < r and all t ≥ t0). Similarly, in the second part

concerning asymptotic stability, the constants V and W must be defined as

lower bounds on V (x, t) and −V̇ (x, t) for all x such that ‖x‖ < R′ and all

t ≥ t0. In order to show uniform stability, the requirement that V is decrescent

in (c) avoids the possibility that V tends to infinity as t → ∞ (which would

imply that r becomes arbitrarily small as t → ∞) by preventing V (x, t) from

becoming infinite within the region on which ‖x‖ < R at any time t ≥ t0.

Uniform asymptotic stability is implied by V
(
x(t0), t0

)
necessarily being finite

(so that the time taken for the value of V to fall below V is finite), due to the

assumption that V is decrescent.

Global Stability

Lyapunov’s direct method also provides a means of determining whether a

system is globally asymptotically stable via simple extensions of the theorems

for asymptotic stability already discussed. Before giving the details of this
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approach, we first need to introduce the concept of a radially unbounded

function.

Radially unbounded functions. As might be expected, the conditions of

theorems 2.9 or 2.10 must hold at all points in state space in order to as-

sert global asymptotic stability for autonomous and non-autonomous systems

respectively. However one extra condition on V , which for time-invariant func-

tions can be expressed:

V (x)→∞ as ‖x‖ → ∞, (2.17)

is also required. A function with this property is said to be radially un-

bounded. For time-varying functions this condition becomes

V (x, t) ≥ V0(x), ∀t ≥ t0, ∀x, (2.18)

where V0 is any radially unbounded time-invariant function.

Below we give the global version of theorems 2.9 and 2.10.

Theorem 2.11 (Global uniform asymptotic stability). If V is a Lyapunov

function for an autonomous system (or non-autonomous system) which satis-

fies conditions (a)–(c) of theorem 2.9 (or conditions (a)–(d) of theorem 2.10

respectively) for all x (ie. in the limit as R0 → ∞), and V is radially un-

bounded, then the system is globally uniformly asymptotically stable.

The conditions on V in this theorem ensure that the origin is uniformly asymp-

totically stable, by theorem 2.9 (or theorem 2.10). To prove the theorem it

therefore suffices to show that the conditions on V imply that every state tra-

jectory x(t) tends to the origin as t → ∞. But since x(t) is continuous, this

requires that x(t) remains bounded for all t ≥ t0 for arbitrary initial conditions

x(t0). Hence the purpose of the radial unboundedness condition on V is to

ensure that x(t) remains at all times within the bounded region defined by

V (x, t) ≤ V (x(t0), t0). If V were not radially unbounded, then not all con-

tours of constant V in state-space would be closed curves, and it would be

possible for x(t) to drift away from the equilibrium even though V̇ is negative.
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The remainder of the proof involves constructing a finite bound on the time

taken for a trajectory starting from arbitrary x(t0) to enter the region on which

‖x‖ < R, for any R > 0. This can be done by finding bounds on V and −V̇
using the positive definite properties of V and −V̇ .

Note that:

1. If the requirement that V̇ is negative definite in theorem 2.11 is replaced

by the condition that V̇ is simply non-positive, then x(t) is guaranteed

to be globally bounded. This means that, for every initial condition

x(t0), there exists a finite constant R
(
x(t0)

)
such that ‖x(t)‖ < R for

all t ≥ t0.
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Figure 9: Contours of V (x1, x2) = V0 for the function V defined in (2.20)

(dashed lines), and state trajectories of (2.19) for two different initial conditions

(solid lines).

Example 2.12. To determine whether x1 = x2 = 0 is a stable equilibrium of

the system

ẋ1 = (x2 − 1)x3
1

ẋ2 = − x4
1

(1 + x2
1)

2
− x2

1 + x2
2

(2.19)

using Lyapunov’s direct method, we need to find a scalar function V (x1, x2)
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satisfying some or all of the conditions of theorems 2.9 and 2.11. As a starting

point, try the positive definite function

V (x1, x2) = x2
1 + x2

2.

Differentiating this function along system trajectories, we have

V̇ (x1, x2) = 2x1ẋ1 + 2x2ẋ2

= −2x4
1 + 2x2x

4
1 − 2

x2x
4
1

(1 + x2
1)

2
− 2

x2
2

1 + x2
2

,

which is not of the required form since V̇ 6≤ 0 for some x1, x2. However it is

not far off since the 2nd and 3rd terms in the above expression nearly cancel

each other. After some experimentation with the first term in V we find that,

with V redefined as

V (x1, x2) =
x2

1

1 + x2
1

+ x2
2, (2.20)

(which is again positive definite) the derivative becomes

V̇ (x1, x2) = 2
[ x1

1 + x2
1

− x3
1

(1 + x2
1)

2

]
ẋ1 + 2x2ẋ2

= −2
x4

1

(1 + x2
1)

2
− 2

x2
2

1 + x2
2

,

so that V̇ is now negative definite. Thus (2.20) satisfies all of the conditions of

theorem 2.9, and the equilibrium is therefore asymptotically stable. However

V is not radially unbounded since the contours of V (x1, x2) = V0 are not

closed curves for V0 ≥ 1 (figure 9), and it is therefore not possible to conclude

that the system (2.19) is globally asymptotically stable. Neither is it possible

to conclude that (2.19) is not globally asymptotically stable without further

analysis, since some other function V might be found which both satisfies the

conditions of theorem 2.9 and is radially unbounded. In fact (2.19) is not

globally asymptotically stable since it is possible to find initial conditions for

which x1(t), x2(t) do not converge to zero (for example the trajectory starting

from (x1, x2) = (3, 1.5) shown in figure 9 escapes to infinity). ♦
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Exponential stability

Exponential stability is a special case of asymptotic stability in which the con-

vergence of the system state to the equilibrium is bounded by an exponentially

decaying function of time. To show that an equilibrium is exponentially stable

using Lyapunov’s direct method, it is therefore necessary to impose further

conditions on the rate of change of a Lyapunov function which demonstrates

asymptotic stability. The basic approach involves finding a scalar function

V (x, t) whose derivative along system trajectories satisfies

V̇ (x, t) ≤ −aV (x, t) (2.21)

for some constant a > 0, in a region of state space containing the equilibrium.

Suppose therefore that (2.21) holds for all x such that ‖x‖ ≤ R0. If V is

also positive definite and decrescent for ‖x‖ ≤ R0, then by theorem 2.10 there

exists an r > 0 such that all trajectories x(t) with initial conditions x(t0)

satisfying ‖x(t0)‖ ≤ r remain within the region on which ‖x‖ ≤ R0 for all

t ≥ t0. On these trajectories the bound (2.21) holds at all times, which implies

that

V
(
x(t), t

)
≤ V

(
x(t0), t0

)
e−a(t−t0), ∀t ≥ t0. (2.22)

whenever ‖x(t0)‖ ≤ r. In order to conclude that ‖x(t)‖ satisfies a similar

bound, we need to find a lower bound on V (x, t) in terms of a positive power

of ‖x‖ of the form

V (x, t) ≥ b‖x‖p, (2.23)

for some constants b > 0 and p > 0. Note that the positive definiteness of V

ensures that it is always possible to construct such a bound for all x satisfying

‖x‖ ≤ R0. Combining inequalities (2.22) and (2.23) leads to the required

result:

‖x(t0)‖ ≤ r =⇒ ‖x(t)‖ ≤ Re−αt, ∀t ≥ t0.

 R =

[
V
(
x(t0), t0

)
b

]1/p

α = a/p

Clearly this argument can be used to show global exponential stability if R0 can

be taken to be infinite and V is radially unbounded. A variation on the above
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approach assumes that −V̇ is greater than some positive power of ‖x‖, and

then imposes both upper and lower bounds on V in terms of positive powers

of ‖x‖ in order to assert exponential stability.

Concluding remarks

• Lyapunov’s direct method only gives sufficient conditions for stability.

This means for example that the existence of a positive definite V for

which V̇ 6≤ 0 along system trajectories does not necessarily imply that

x = 0 is unstable.

• Lyapunov analysis can be used to find conditions for instability of an

equilibrium point, for example x = 0 must be unstable if V and V̇ are

both positive definite. These results are known as instability theorems.

• It is also possible to show that the premises and conclusions of each

of theorems 2.9–2.11 are interchangeable, so for example there must be

some positive definite function V with V̇ negative definite if x = 0 is

asymptotically stable. These results are known as converse theorems.

• There are no general guidelines for constructing Lyapunov functions. In

situations where physical insights into the system dynamics do not suggest

an obvious choice for V , it is often necessary to resort to a Lyapunov-like

analysis based on a function satisfying only some of the conditions of

theorems 2.9–2.11. This approach will be discussed in the next section.
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3 Lyapunov-like convergence analysis 11

A common problem with Lyapunov’s direct method is that it allows asymptotic

stability to be concluded only under extremely restrictive conditions. Thus it

may be easy to find a positive definite function V which is non-increasing

along system trajectories, but finding a V for which V̇ is negative definite

along system trajectories is usually a much harder task. However it is often

possible to determine whether the system state, or at least some component

of the state, converges asymptotically using a Lyapunov-like analysis based on

a non-positive (rather than negative definite) derivative V̇ .

The techniques for Lyapunov-like convergence analyses are slightly different for

autonomous and non-autonomous dynamics. This section first considers the

case of non-autonomous systems of the form

ẋ = f(x, t), f(0, t) = 0, ∀t. (3.1)

The method for autonomous systems, though more powerful and closer in

principle to Lyapunov’s direct method, will then be treated as a special case

of that for non-autonomous systems.

3.1 Convergence of non-autonomous systems

Suppose that we have found a positive definite function V (x, t) whose deriva-

tive V̇ along trajectories of (3.1) satisfies

V̇ (x, t) ≤ −W (x) ≤ 0 (3.2)

for some non-negative function W . The aim of the convergence analysis is to

show that W
(
x(t)

)
tends to zero, and therefore that x(t) converges to the

set of states on which W (x) = 0. Specifically, (3.2) implies that V cannot

increase along system trajectories, and since V ≥ 0 due to the assumption

that V is positive definite, it follows that V
(
x(t), t

)
tends to a finite limit as

t→∞:

0 ≤ lim
t→∞

V
(
x(t), t

)
≤ V

(
x(t0), t0

)
,

11See Slotine and Li §3.4.3 pp68–76 and §4.5 pp122–126 or Vidyasagar §5.3 pp176–186
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where x(t) is a trajectory of (3.1) with initial condition x(t0). Integration

of (3.2) therefore yields a finite bound on the integral of W (x(t)) over the

interval t0 ≤ t <∞,∫ ∞
t0

W
(
x(t)

)
dt ≤ V

(
x(t0), t0

)
− lim

t→∞
V
(
x(t), t

)
. (3.3)

Under certain conditions on W this bound leads to the conclusion that W
(
x(t)

)
converges to zero as t tends to ∞.

At first sight it may seem obvious that a non-negative function φ(t), which

has finite integral over the infinite interval 0 ≤ t < ∞, necessarily converges

to zero. However this is not true in general. For example if φ were allowed to

be discontinuous, then it would be possible to change the value of φ at any

individual point t without affecting the integral of φ. In fact continuity is not

enough to ensure convergence of φ, since it is possible to construct functions

which are continuous at any finite time t, but which effectively become discon-

tinuous as t → ∞. Figure 10 gives an example of such a function; here φ(t)

does not converge to a limit as t → ∞ even though φ is continuous and the

integral
∫∞

0 φ(t) dt is finite. A condition which does guarantee that φ(t)→ 0

given that
∫ t

0 φ(s) ds converges to a finite limit as t → ∞ is provided by a

technical result known as Barbalat’s lemma, which is stated here in a slightly

simplified form.

Barbalat’s lemma. For any function φ(t), if

(a). φ̇(t) exists and is finite for all t

(b). limt→∞
∫ t

0 φ(s) ds exists and is finite

then limt→∞ φ(t) = 0.

From (3.3) it can therefore be concluded that W (x(t)) converges to zero

asymptotically as t → ∞ provided the derivative Ẇ of W along trajectories

of (3.1) remains finite at all times t. Using the chain rule we have

Ẇ (x) = ∇W (x)f(x, t),

and Ẇ
(
x(t)

)
must therefore remain finite if W and f are continuous with

respect to their arguments and x(t) is bounded for all t.
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Figure 10: Example of a non-negative continuous function which does not

converge to zero even though its integral tends to a finite limit as t → ∞.

Upper plot: φ(t) =
∑∞

k=0 e
−4k(t−k)2, lower plot:

∫ t
0 φ(s) ds.

The following theorem summarizes this argument. For convenience the theo-

rem assumes V to be decrescent and radially unbounded in order to ensure that

x(t) remains finite for all t ≥ t0 given arbitrary initial conditions x(t0). Clearly

these additional assumptions are not needed if the boundedness of x(t) is as-

certained via a Lyapunov analysis based on an alternative Lyapunov function.

Theorem 3.1 (Convergence for non-autonomous systems). Let the function

f in (3.1) be continuous with respect to x and t, and assume that there exists

a continuously differentiable scalar function V (x, t) such that:

(a). V (x, t) is positive definite, radially unbounded and decrescent

(b). V̇ (x, t) ≤ −W (x) ≤ 0

where W is a continuous function. Then all state trajectories x(t) of (3.1)

are globally bounded, and satisfy W
(
x(t)

)
→ 0 as t→∞.
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3.2 Convergence of autonomous systems

The preceding analysis can be used to derive stronger convergence properties

when the system dynamics are autonomous, ie. of the form

ẋ = f(x), f(0) = 0. (3.4)

Essentially this is because it is much easier to determine whether the system

state remains within a given region of state space if the system is autonomous

rather than non-autonomous. Consequently an estimate of a set of points, say

R, to which the state x(t) of (3.4) converges can be refined using the criterion

that, having entered R, x(t) must remain within R at all future times.

To illustrate the approach, consider again the mass-spring-damper example

of section 2.3. We have already shown that the equilibrium y = ẏ = 0 is

stable using the argument of theorem 2.9. But it is not possible to show

asymptotic stability by applying Lyapunov’s direct method to the function V

defined in (2.11), since the derivative V̇ = −c(ẏ)ẏ is not a negative definite

function of the system state. However the stability of the equilibrium ensures

that y and ẏ remain finite on any system trajectory with initial conditions

sufficiently close to the equilibrium. Application of Barbalat’s lemma to V̇

therefore shows that such trajectories converge to the set of states on which

ẏ = 0. But if ẏ = 0, the acceleration ÿ is non-zero whenever the displacement

y is non-zero, and consequently the system state cannot remain indefinitely at

any point for which y 6= 0. This implies that the state must converge to the

set on which ẏ = 0 and y = 0, ie. the origin. Thus the equilibrium y = ẏ = 0

is asymptotically stable.

This argument is based on the concept of an invariant set.

Definition 3.2 (Invariant set). A set M is an invariant set for a dynamic

system if every system trajectory starting in M remains in M at all future

times.

Thus an invariant set has the same properties as an equilibrium point but,

unlike an equilibrium, can consist of more than just a single point. Useful
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examples of invariant sets are equilibrium points and limit cycles (ie. system

trajectories which form closed curves in state space).

The method used above to show the asymptotic stability of the mass-spring-

damper system can be generalized simply by noting that every bounded tra-

jectory of an autonomous system converges to an invariant set. If it can be

shown, using Barbalat’s lemma for example, that the trajectories x(t) of (3.4)

converge to some set R, then it follows that x(t) must converge to an invariant

set M contained in R. The following theorem uses this observation to refine

theorem 3.1, adapted for the case of autonomous dynamics.

Theorem 3.3 (Invariant set theorem). Let f in (3.4) be continuous, and

assume that there exists a continuously differentiable scalar function V (x)

such that:

(a). V (x) is positive definite and radially unbounded

(b). V̇ (x) ≤ 0

then all solutions x(t) of (3.4) are globally bounded. Furthermore, let R be

the set of all x for which V̇ (x) = 0, and let M be the largest invariant set in

R. Then every state trajectory x(t) of (3.4) converges to M as t→∞.

Note that:

1. The set M is defined in theorem 3.3 as the largest invariant set in R in

the sense that M is the union of all invariant sets (eg. equilibrium points

or limit cycles) within R.

2. The Lyapunov-like convergence theorems of this section contain the global

asymptotic convergence results of Lyapunov’s direct method (theorem 2.11)

as special cases; namely when W (x) in the convergence theorem for non-

autonomous systems is positive definite, and when M in the invariant set

theorem consists only of the origin. In fact theorem 3.3 presents a signif-

icant generalization of Lyapunov’s direct method by providing criteria for

convergence to entire state trajectories such as limit cycles.

The region of attraction of the set M in theorem 3.3 is clearly the entire state

space, since the conditions on V are required to hold for all x. However, by
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relaxing slightly the conditions of theorem 3.3, a more general local invariant set

theorem can be derived for autonomous systems. This is useful for determining

regions of attraction for systems whose stability properties are local rather than

global.

Theorem 3.4 (Local invariant set theorem). Let f in (3.4) be continuous,

and assume that there exists a continuously differentiable scalar function V (x)

such that:

(a). for some constant V > 0, the set Ω defined by V (x) < V is bounded

(b). V̇ (x) ≤ 0 for all x in Ω

then Ω is an invariant set for (3.4). Furthermore, let R be the set of all points

x in Ω for which V̇ (x) = 0, and let M be the largest invariant set in R. Then

every solution x(t) of (3.4) with initial conditions in Ω converges to M as

t→∞.

To show that Ω is an invariant set, note that condition (b) of the theorem

implies that V
(
x(t)

)
cannot exceed the value V along any trajectory starting

in Ω. Convergence of x(t) to M can be shown by applying Barbalat’s lemma

to V̇
(
x(t)

)
along trajectories with initial conditions in Ω, and then invoking

the condition that x(t) must converge to an invariant set.12

Note that:

1. The local invariant set theorem does away with the requirement that V is

positive definite by requiring instead that the level set Ω is bounded. This

condition performs a similar function to the positive definite condition of

Lyapunov’s direct method since it ensures that the continuous function

V is lower bounded on Ω (ie. V (x) ≥ V for all x in Ω and some finite

V ), and that any trajectory contained in Ω is bounded.

2. The set Ω is a region of attraction of the set M , though not necessarily

the largest region of attraction.

12Barbalat’s lemma is applicable here since V and V̈ are necessarily finite on trajectories in Ω due

to the assumptions that V , V̇ and f are continuous and Ω is bounded.
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Example 3.5. Consider the system

ẋ1 = −x2 + x1(x
2
1 + x2

2 − 1)

ẋ2 = x1 + x2(x
2
1 + x2

2 − 1)
(3.5)

which has an equilibrium at x1 = x2 = 0. To determine the stability of this

equilibrium point, define V as the function

V (x1, x2) = x2
1 + x2

2.

Then the derivative of V along trajectories of (3.5) is given by

V̇ (x1, x2) = 2(x2
1 + x2

2)(x
2
1 + x2

2 − 1).

Let Ω be the set of points (x1, x2) satisfying V (x1, x2) < 1, then Ω is bounded

(since Ω is a unit disc centred on the origin) and V̇ (x1, x2) ≤ 0 for all x in Ω.

Thus all conditions of the local invariant set theorem are satisfied, and since

the subset of Ω on which V̇ (x1, x2) = 0 is simply the point x1 = x2 = 0, it

follows that any trajectory starting within Ω converges to the origin. Therefore

the origin is an asymptotically stable equilibrium and Ω is contained within its

region of attraction.

Even though Ω is the largest region of attraction that can be determined with

this choice of V (since V̇ (x1, x2) 6≤ 0 for some (x1, x2) in the set V (x1, x2) <

V whenever V > 1), it cannot be concluded without further analysis that Ω

contains every point in the region of attraction of the origin. In this example

however, Ω is in fact the largest region of attraction of the origin since the

set Ω′ defined by V (x1, x2) = 1 is an unstable limit cycle, ie. all trajectories

starting from points arbitrarily close to Ω′ either converge asymptotically to

the origin or tend to infinity.

To prove this, first note that the first and second derivatives of x2
1+x2

2−1 along

system trajectories are zero at any point satisfying x2
1 +x2

2 = 1. On every state

trajectory with initial conditions x1(t0), x2(t0) satisfying x2
1(t0) + x2

2(t0) = 1

we therefore have x2
1(t) + x2

2(t) = 1 for all t ≥ t0, which implies that Ω′ is a

limit cycle of (3.5). Next consider the function

V ′(x1, x2) = (x2
1 + x2

2 − 1)2,
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which has derivative

V̇ ′(x1, x2) = 4(x2
1 + x2

2)(x
2
1 + x2

2 − 1)2

along trajectories of (3.5). Since V ′ is minimized on the set Ω′ and V̇ ′ is

positive whenever x2
1 +x2

2 6= 0, it can be concluded that Ω′ is an unstable limit

cycle. ♦
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Figure 11: The region of attraction Ω and the unstable limit cycle Ω′ in ex-

ample 3.5.
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4 Linear systems and passive systems

This section builds on the discussion of Lyapunov’s direct method in the pre-

vious section by considering two classes of dynamic system, linear and passive

systems. It is possible to find Lyapunov functions for these classes of system

systematically, and the problem of determining Lyapunov functions for complex

nonlinear systems is therefore simplified if linear or passive subsystems can be

identified as components of the original dynamics. This section first considers

the stability of linear systems within the Lyapunov stability framework, and

then describes passivity and the properties of interconnected passive systems.

It concludes with a discussion of the stability of feedback systems in which

the forward path contains a linear subsystem and the feedback path contains

a memoryless (though possibly time-varying) nonlinearity.

4.1 Linear systems 13

The Lyapunov stability analysis of linear time-invariant (LTI) systems is based

entirely on quadratic forms, i.e. functions of the form

V (x) = x>Px.

Before giving the details of the method, we first describe some properties of

matrices and quadratic forms.

• Any square matrix P can be expressed as the sum of a symmetric matrix

P1 (satisfying P1 = P>1 ) and a skew-symmetric matrix P2 (satisfying

P2 = −P>2 ):

P = P1 + P2,

{
P1 = 1

2(P + P>),

P2 = 1
2(P − P>).

• If P2 is skew-symmetric, then x>P2x = x>P>2 x = −x>P2x, and hence

x>P2x = 0 for any vector x of conformal dimensions. Therefore a

quadratic form x>Px with non-symmetric P is equivalent to the quadratic

form 1
2x
>(P + P>)x involving the symmetric part of P alone.

13See Slotine and Li §3.5.1 pp77–83 or Vidyasagar §5.4.2 pp196–202



36 Linear systems and passive systems

• A symmetric matrix P is positive definite (denoted P � 0) if the

quadratic form involving P is a positive definite function, i.e. if

x>Px > 0 for all x 6= 0.

If x>Px ≥ 0 for all x 6= 0, then P is positive semidefinite (P � 0).

Similarly, P is negative definite (P ≺ 0) or negative semidefinite

(P � 0) respectively if x>Px < 0 or x>Px ≤ 0 for all non-zero x.

• Any symmetric matrix P can be decomposed as

P = UΛU>,

where Λ is a diagonal matrix of eigenvalues of P , and U is an orthogonal

matrix (U>U = I) containing the eigenvectors of P . Thus

x>Px = z>Λz, z = U>x,

and it follows that P is positive definite if and only if all eigenvalues of

P are strictly positive. By the same argument P is positive semidef-

inite, negative semidefinite, or negative definite if all eigenvalues of P

are greater than or equal to zero, less than or equal to zero, or strictly

negative, respectively.

To find a Lyapunov function for a given stable linear system

ẋ = Ax, (4.1)

consider the positive definite function

V (x) = x>Px,

where P is some positive definite symmetric matrix (i.e. P = P> � 0). The

derivative of V along trajectories of (4.1) is

V̇ (x) = x>(A>P + PA)x,

and the system is therefore globally asymptotically stable by Lyapunov’s direct

method if there exists a positive definite matrix Q satisfying the condition

A>P + PA = −Q. (4.2)
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This is known as a Lyapunov matrix equation.

For arbitrary positive definite P , the matrix Q in (4.2) will not necessarily be

positive definite. However it is always possible to choose a matrix Q = Q> � 0

and solve (4.2) for P = P> � 0 if (4.1) all eigenvalues of A have strictly

negative real parts. To see this, suppose that a particular Q has been chosen.

Then along a trajectory of the system (4.1) with initial condition x(t0), the

derivative of the quadratic form V defined in terms of a P satisfying the

Lyapunov equation (4.2) is given by

V̇
(
x(t)

)
= −x>(t0)e

A>(t−t0)QeA(t−t0)x(t0).

Since (4.1) is stable, V
(
x(t)

)
must converge to zero as t→∞. The integral

of V̇ with respect to t therefore gives

x(t0)
>Px(t0) = x>(t0)

[∫ ∞
0

eA
>tQeAtdt

]
x(t0).

This must be true for any initial condition x(t0), so that

P =

∫ ∞
0

eA
>tQeAtdt. (4.3)

The integral on the RHS is well-defined due to the assumption that (4.1) is

stable, and thus defines a positive definite matrix P satisfying the Lyapunov

equation (4.2) for given positive definite Q.14

This discussion can be summarized as follows.

Theorem 4.1 (Lyapunov stability of LTI systems). A necessary and sufficient

condition for a LTI system ẋ = Ax to be asymptotically stable is that, for any

positive definite symmetric matrix Q, the Lyapunov matrix equation (4.2) has

a unique solution P which is a positive definite symmetric matrix.

A Lyapunov function for the linear system (4.1) can therefore computed by

choosing Q � 0 and solving (4.2) for P . The system (4.1) is stable if and only

if P � 0. For given A and Q, the Lyapunov equation (4.2) is a set of linear

14The matrix P in (4.3) must be positive definite since x>Px = 0 implies that x>eA
>tQeAtx = 0

for all t ≥ 0, and hence x>Qx = 0, which implies that x = 0 since Q � 0.
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equations in the elements of P of the form (A>⊗I+I⊗A>)vec(P ) = −vec(Q)

(where ⊗ is the Kronecker product and vec(·) is the vector of stacked columns

of a matrix), which can be solved for vec(P ) using a linear equation solver.

4.2 Passive systems 15

Just as a Lyapunov function can be thought of as a generalization of the energy

stored within a system, passivity generalizes the property of energy dissipatioxn.

Passive systems have no internal sources of power, or, more generally, the rate

of dissipation of energy in a passive system exceeds the rate of internal energy

generation. Motivated by the principle of energy conservation in physical sys-

tems, this leads to the following definition of passivity for nonlinear systems of

the form
ẋ = f(x, u, t)

y = h(x, t)

{
u : system input,

y : system output.
(4.4)

Definition 4.2 (Passivity). The system (4.4) is passive if there exists a

continuous function V (x, t) such that V ≥ 0, V (0, t) = 0, and along system

trajectories

V̇ (x, t) = y(t)>u(t)− g(t) (4.5)

for all t, for some function g(t) ≥ 0.

If
∫ t

0 g dt ≥ ε
∫ t

0 u
>u dt for some ε > 0 and all t, then (4.4) is strictly passive.

The term y>u in (4.5) corresponds to the net power input to the system, while

g represents the rate of energy dissipation within the system16.

Example 4.3. The system:

mẍ+ x2ẋ3 + x7 = F

is a passive mapping (from F to ẋ) because

d

dt

(
1
2mẋ

2 + 1
8x

8
)

= ẋF − x2ẋ4. ♦

15See Slotine and Li §4.7 pp132–142
16Strictly passive systems defined in Def. 4.2 are also called “input strictly passive” or “dissipative”
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There are usually many different possible ways to define the output of a system.

However it makes sense to choose as the output a signal which forms the input

to another connected subsystem. This highlights the usefulness of the passivity

property: it allows a Lyapunov function for a system of interconnected passive

systems to be constructed from the sum of the functions V for each passive

subsystem.

Consider for example the feedback connection of a pair of passive systems

S1 and S2 shown in Figure 12. From the definition of passivity, there exist

non-negative functions V1 and V2 satisfying

V̇1 = y>1 u1 − g1, g1 ≥ 0,

V̇2 = y>2 u2 − g2, g2 ≥ 0.

Therefore the function V1 + V2 has derivative

V̇1 + V̇2 ≤ y>1 u1 + y>2 u2 − g1 − g2

= y>1 (u1 + y2)− g1 − g2 = −g1 − g2,

and applying the convergence analysis of section 3, it follows that g1(t) and

g2(t) converge to zero as t→∞. Furthermore, if V1 and V2 are positive definite

decrescent functions of the state of the systems S1 and S2 respectively, then

V1 +V2 is a Lyapunov function which shows uniform stability of the equilibrium

at x = 0 of the overall system.

h S1

S2
�

6

-

y2

u1 y1

u2

−

Figure 12: Feedback connection of passive systems.

Passive systems can form the building blocks of larger passive systems. In

particular, both the feedback connection of Figure 13(a) and the parallel con-

nection of Figure 13(b) result in passive dynamics mapping the overall input u

to the overall output y whenever the subsystems S1 and S2 are both passive.
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Again this can be shown by considering the sum of the storage functions V1

and V2 associated with the individual subsystems S1 and S2.
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+

+

yu

(b)

Figure 13: Interconnected passive subsystems. (a) Feedback connection. (b)

Parallel connection.

Example 4.4 (Nonlinear adaptive control). Suppose that we want to control

the first order plant

ẋ = u+ θx2 (4.6)

so that the state x converges to zero, where θ is an unknown but constant pa-

rameter. Let θ̂ be an estimate of θ which is allowed to vary over time according

to the information on θ contained in measurements of x. The construction of

the estimate θ̂ and the design of a control law based on this estimate is an

adaptive control problem.

To solve this problem using a Lyapunov-based design method, consider the

derivative of the function V1 = 1
2x

2 along system trajectories:

V̇1 = x(u+ θx2).

If the estimate θ̂ were exact (i.e. if θ̂ = θ), then the control law

u = −kx− θ̂x2, k > 0, (4.7)
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would give V̇1 = −kx2, and would therefore make x = 0 an asymptotically

stable equilibrium point of the resulting closed-loop system.17 However, for

non-zero parameter estimate errors θ− θ̂ the control law (4.7) may or may not

be stabilizing, depending on the variation of θ̂ over time. With u defined as

in (4.7), the derivative of V1 is given by

V̇1 = (θ − θ̂)x3 − kx2.

Thus V1 satisfies condition (4.5) of the passivity definition (with input θ − θ̂,

output x3, and g = kx2), which shows that this control law results in passive

dynamics from the error θ − θ̂ to x3. It follows that both the estimation

error and the equilibrium x = 0 of the closed-loop system can be stabilized by

updating θ̂ so that the dynamics between x3 and −(θ−θ̂) are passive (Fig. 14).

One such update law is
˙̂
θ = x3 (4.8)

since this ensures that the function V2 = 1
2(θ− θ̂)2 has derivative (see Fig. 14).

V̇2 = −(θ − θ̂) ˙̂
θ = −(θ − θ̂)x3

h Plant +
Control

Law

Estimate
Update

�

6

-

θ̂ − θ

θ − θ̂ x3

x3

−

Figure 14: Feedback connection of the subsystems formed by the plant +

control law and the estimate update law. Both are passive when the signals

±(θ − θ̂) and x3 are considered as inputs and outputs.

To check that the combination of the control law (4.7) and parameter update

law (4.8) meet the control objective, consider the function

V = V1 + V2 = 1
2x

2 + 1
2(θ − θ̂)2.

17For this reason (4.7) is known as a certainty equivalent control law.
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Along trajectories of the closed-loop system (4.6), (4.7), (4.8), we have

V̇ = V̇1 + V̇2 = −kx2.

Therefore the estimate θ̂(t) remains finite for all t and x = 0 is a globally

asymptotically stable equilibrium of the closed-loop system. ♦

Linear passive systems

For linear systems, passivity has a convenient interpretation in terms of the

system frequency response. Consider the transfer function model

Y (s)

U(s)
= H(s). (4.9)

Theorem 4.5. The system (4.9) is passive if and only if the poles pi of H

satisfy Re(pi) ≤ 0 and the real part of its frequency response function is

non-negative:

Re
[
H(jω)

]
≥ 0, for all ω ≥ 0. (4.10)

This is easy to show using Parseval’s theorem, which implies that the inte-

gral of the product y(t)u(t) is non-negative if and only if (4.10) is satisfied.

Similarly (4.9) is strictly passive18 if its poles lie strictly in the left half plane

and

Re
[
H(jω)

]
> 0, for all ω ≥ 0. (4.11)

The Kalman-Yakubovich-Popov lemma relates the frequency response con-

dition (4.11) to the state space of (4.9). A simplified version is given next.

Lemma 4.6 (Kalman-Yakubovich-Popov). If (4.9) is strictly passive, then

there exist positive definite matrices P and Q such that 19

V (x) = x>Px, V̇ (x) = yu− x>Qx

where x is the state (of any controllable and observable realization) of (4.9).

18Passive and strictly passive linear systems are sometimes referred to as positive real systems and

strictly positive real systems respectively.



4.3 Linear systems and nonlinear feedback 43

Despite the useful properties of passive systems, it must be recognized that

passivity is quite a restrictive conditions for the following reasons.

• A passive system must be open-loop stable (i.e. stable for u(t) = 0).

• The relative degree (number of poles minus zeros) of a passive system

must be 0 or 1.

The condition on the relative degree is a direct consequence of the passivity

condition (4.10). However, it also applies more generally to nonlinear passive

systems, for which the relative degree is defined as the number of times the

output must be differentiated before an expression containing the input is

obtained.

4.3 Linear systems and nonlinear feedback20

This section considers the stability of the class of feedback systems with the

structure shown in Figure 15. Here the forward path contains a linear time-

invariant system H, and the feedback is via a nonlinear function φ. We assume

that the input and output of H are scalars (multivariable generalisations exist).

The dynamics of the linear system H are given by

ẋ = Ax+ bu y = c>x (4.12)

where (A, b, c) is a state-space realization of the transfer function H(s) =

c>(sI− A)−1b, and the feedback path is specified by

u = −z z = φ(y). (4.13)

The nonlinearity φ is memoryless (i.e. the mapping z = φ(y) contains no

dynamics), but is allowed to be time-varying. It is assumed that φ satisfies a

sector condition, defined as follows.

Definition 4.7. A continuous function φ belongs to the sector [a, b] if there

exist two numbers a and b such that

a ≤ φ(y)

y
≤ b (4.14)

whenever y 6= 0, and φ(0) = 0.
20See Slotine and Li §4.8 pp142–147, or Khalil §10.1 pp400–418.
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Figure 15: System structure.

The graphical interpretation of the sector condition (4.14) is simply that φ(y)

lies between the two lines ay and by, as shown in Figure 16.

0

z

y

ay

by

φ(y)

Figure 16: A function φ belonging to the sector [a, b].

Systems of this form are of considerable practical interest and a number of

different criteria for their stability have been determined. We will derive one of

these, known as the circle criterion. This criterion has a graphical interpreta-

tion in terms of the frequency response H(jω) which generalizes the Nyquist

criterion for stability of linear feedback systems.

The circle criterion is based on the concept of passivity introduced in sec-

tion 4.2. If the linear system H is strictly passive, i.e. if all poles of H have

strictly negative real part and the frequency response H(jω) satisfies condi-

tion (4.11), then the closed-loop system is guaranteed to be globally asymp-

totically stable whenever φ belongs to the sector [0,∞). This follows from the

Kalman-Yakubovich-Popov lemma and the fact that φ(y) then has the same
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sign as y. Specifically, the Kalman-Yakubovich-Popov lemma ensures that

there exists a positive definite symmetric matrix P such that the function

V (x) = x>Px

has derivative

V̇ (x) = yu− x>Qx,

for some positive definite Q, along trajectories x(t) of (4.12). The feedback

control law (4.13) therefore gives

V̇ (x) = −yφ(y)− x>Qx

where yφ(y) ≥ 0 for all y due to the assumption that φ belongs to the sector

[0,∞). Therefore

V̇ (x) ≤ −x>Qx

which implies that the equilibrium x = 0 is globally asymptotically stable by

Lyapunov’s direct method.

This argument can be extended to cover cases in which H is not passive and

φ belongs to a general sector [a, b] using loop transformations. The idea is to

construct an equivalent closed-loop system in which the feedback path con-

tains a nonlinearity belonging to the sector [0,∞) by adding feedforward and

feedback loops to the subsystems of Figure 15. This approach allows the pre-

ceding argument to be used when φ lies outside the sector [0,∞) by placing

more severe restrictions than (4.10) on the frequency response H(jω). Alter-

natively it enables the argument to be applied when H is open-loop unstable

by exploiting more precise information on the sector to which φ belongs.

Figures 17 and 18 show the two basic types of loop transformation. The signals

u, y and z in each of these closed-loop systems are identical to those in the

original system in figure 15, given the same initial conditions for the system

H. For example the input to H in Figure 17 is given by

u = u′ − ky = −z′ − ky = −(z − ky)− ky = −φ(y),

Similarly, the input to H in Figure 18 is

u = −z = −φ(y′ + kz) = −φ
(
(y + ku) + kz

)
= −φ(y).
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Figure 17: Loop transformation of the system in Figure 15. If φ belongs to

the sector [a, b] then φ′ belongs to the sector [a− k, b− k].
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Figure 18: Loop transformation of the system in Figure 15. If φ belongs to

the sector [a, b] then φ′ belongs to the sector [a/(1− ak), b/(1− bk)].
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However the mapping φ′ between y and z′ in Figure 17 is given by

z′ = φ′(y)

= φ(y)− ky

so φ′ belongs to the sector [a− k, b− k] whenever φ belongs to [a, b]. On the

other hand the mapping φ′ between y′ and z in Figure 18 satisfies

z = φ′(y′) ⇐⇒ y′ = φ′
−1

(z)

= φ−1(z)− kz.

If φ belongs to the sector [a, b] (so that the inverse mapping φ−1 belongs to

[1/b, 1/a]), then the inverse of φ′ therefore lies in the sector [1/b−k, 1/a−k],

which implies that φ′ belongs to [a/(1− ak), b/(1− bk)].

Both types of loop transformation are employed in Figure 19 in order to con-

struct a nonlinearity φ′ which belongs to the sector [0,∞) whenever the original

nonlinear function φ belongs to [a, b]. The Kalman-Yakubovich-Popov lemma

can therefore be used to show that the closed-loop system in Figure 15 is

asymptotically stable provided the transformed linear subsystem H ′ in Fig-

ure 19 is (i) strictly stable and (ii) satisfies Re[H ′(jω)] > 0 for all ω ≥ 0.

The subsystem H ′ contains a negative feedback loop around H with gain a.

Consequently the stability of H ′ can be determined via the familiar Nyquist

criterion for closed-loop stability. Thus if H(s) has ν poles with positive real

part, then all poles of H ′(s) have strictly negative real part if and only if the

plot of H(jω) makes ν anti-clockwise encirclements of the point −1/a as ω

goes from −∞ to +∞.

The condition on the real part of H ′(jω) has the following graphical interpre-

tation. The frequency response of H ′ is given by

H ′(jω) =
H(jω)

1 + aH(jω)
+

1

b− a
and routine algebra shows that Re[H ′(jω)] > 0 for all ω ≥ 0 if and only if∣∣∣H(jω) + 1

2

(
1/a+ 1/b

)∣∣∣2 > 1
4

(
1/a− 1/b

)2
, if ab > 0 (4.15a)∣∣∣H(jω) + 1

2

(
1/a+ 1/b

)∣∣∣2 < 1
4

(
1/a− 1/b

)2
, if ab < 0 (4.15b)
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Figure 19: Loop transformation of the system in Figure 15. If φ belongs to

the sector [a, b] then φ′ belongs to the sector [0,∞).
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for all ω ≥ 0. Let D(a, b) denote the disc in the complex plane with centre

−1
2

(
1/a+1/b

)
and radius 1

2

(
1/a−1/b

)
(see Figure 20). Then condition (4.15a)

is satisfied for all ω ≥ 0 if the plot of H(jω) does not enter the disc D(a, b),

while condition (4.15b) is satisfied if the plot of H(jω) remains inside the disc

D(a, b) for all ω ≥ 0.

D(a, b)

−1

a
−1

b

0
Re[H(jω)]

Im[H(jω)]

Figure 20: The disc D(a, b) in the circle criterion.
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These conditions are summarized in the following statement of the circle cri-

terion.

Theorem 4.8 (Circle Criterion). If the system (4.12)-(4.13) satisfies the con-

ditions:

(a). H(s) has ν poles with positive real part

(b). the nonlinearity φ belongs to the sector [a, b]

(c). one of the following is true

• 0 < a < b, and the Nyquist plot of H(jω) does not enter the disc

D(a, b) and encircles it ν times anti-clockwise

• 0 = a < b, ν = 0, and the Nyquist plot of H(jω) stays in the

half-plane Re(s) > −1/b

• a < 0 < b, ν = 0, and the Nyquist plot of H(jω) stays in the

interior of the disc D(a, b)

• a < b < 0, and the Nyquist plot of −H(jω) does not enter the disc

D(−a,−b) and encircles it ν times anti-clockwise

then the equilibrium point x = 0 of the closed-loop system is globally asymp-

totically stable.

Note that:

1. The circle criterion allows the stability of the nonlinear system to be

determined from the frequency response of the linear subsystem, which is

relatively easy to compute experimentally.

2. The disc D(a, b) performs roughly the same function in the circle criterion

as the critical point −1/a in the Nyquist criterion. As b→ a, the sector

bound on φ shrinks, and the disc D(a, b) tends towards the critical point

−1/a.

3. Unlike the Nyquist criterion, the circle criterion gives sufficient (and not

necessary) conditions for stability.
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Example 4.9. A nonlinear system has the structure shown in Figure 15, where

φ is a nonlinear function belonging to some sector [a, b], and H is a linear time-

invariant system with transfer function

H(s) =
10

(s− 1)(s+ 3)2
.

Since H(s) has one pole in the right half complex plane (at s = 1), the

Nyquist plot of H(jω) must encircle the disc D(a, b) anti-clockwise once in

order to ensure stability by the circle criterion. From the plot of H(jω) in

Figure 21, this condition requires that a and b are both positive and is satisfied

for example with a = 1, b = 1.3. ♦
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( 
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Figure 21: Nyquist plot of H(jω) in example 4.9 (solid line) and the disc

D(1, 1.3) (dashed line).

4.4 Design example: Hydraulic active suspension system

An active suspension system for a train carriage uses a hydraulic actuator in

series with mechanical springs and oil-filled dampers, arranged as shown in

Figure 22 for a single carriage wheel. The purpose of the hydraulic actuator
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is to reduce tilting caused by slowly varying loads acting on the carriage body

(e.g. while cornering). The inclusion of the hydraulic actuator therefore allows

for the use of a softer spring-damper assembly, resulting in better vibration

isolation and a smoother ride.

carriage body

Q�

ck

xa

x
hydraulic
actuator

wheel

Figure 22: Active suspension for a train carriage.

The flow Q of fluid into the hydraulic actuator and its extension xa (assuming

incompressible fluid) are determined from

Q = φ(u)

ẋa = Q/A

where u is the valve control signal, φ is a nonlinear function giving the valve

characteristics, and A is the working area of the actuator. The function φ

is not known exactly because of fluctuations in the pressure of the hydraulic

fluid, but sector bounds on φ are available:

φ ∈ [0.005, 0.1].

A controller for u is to be designed in order to compensate for the effects of

unknown constant (or slowly varying) disturbance loads on the displacement

x of the carriage body despite the uncertain valve characteristics φ(u).
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The force exerted on the carriage by the suspension unit is Fsusp:

Fsusp = k(xa − x) + c(ẋa − ẋ)

=
(
k

∫ t

Q dt+ cQ
)
/A− kx− cẋ, Q = φ(u)

If F and m are respectively the disturbance load that is to be rejected and the

effective carriage mass acting on the suspension, then the dynamic model of

carriage plus suspension is given by

Fsusp − F = mẍ

=⇒ mẍ+ cẋ+ kx =
(
k

∫ t

Q dt+ cQ
)
/A− F, Q = φ(u),

or, in terms of transfer functions

X(s) =
cs+ k

ms2 + cs+ k
· Q(s)

As
− F

ms2 + cs+ k
, Q = φ(u).

Therefore, defining the control signal u feedback via a compensator with trans-

fer fn. C(s):

U(s) = C(s)E(s), e = −x, setpoint: x = 0

leads to a closed-loop system with the block diagram of Figure 23.

-0 + g -e C(s) -u φ(·) -Q cs+ k

As
- g?+ −

F

-
1

ms2 + cs+ k
-x

6−

Figure 23: Closed-loop system with compensator C(s).

Using Q = φ(u), u = −C(s)X(s), this can be rearranged so that the nonlin-

earity is in the feedback path as shown in Fig. 24, which (for F = 0) now has

the form of Fig. 15, with

H(s) =
cs+ k

As(ms2 + cs+ k)
.C(s)

φ ∈ [0.005, 0.1].



54 Linear systems and passive systems

-+
As

cs+ k
· F g - cs+ k

As
-

1

ms2 + cs+ k
-−x C(s)

u

�φ(·)Q

6−

Figure 24: Closed-loop system.

To decide on the structure of C(s), note that the hydraulics introduce an

integrator into the forward path transfer function, so no integral term is needed

in the controller in order to reject the constant disturbance F . Therefore

consider a proportional + derivative compensator:

C(s) = K(1 + αs) =⇒ H(s) =
K(1 + αs)(cs+ k)

As(ms2 + cs+ k)

From the circle criterion, closed-loop (global asymptotic) stability is ensured if

H(jω) lies outside the disc D(0.005, 0.1), for which a sufficient condition is

that

Re
[
H(jω)

]
> −10.

From the Nyquist plots of Figure 25, the value of α that maximizes the critical

gain K and the corresponding value of K are given by

α = 0.4

K ≤ 10/3.4 = 2.94

Note that the maximum value for K is of interest here since the response of

the closed-loop system is fastest when K is maximized.
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Figure 25: Nyquist plot of H(jω) for K = 1 and α = 0, 0.2, 0.4, 0.8


