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Nonlinear Systems Examples Sheet

Mark Cannon, Hilary Term 2023

Equilibrium points

1. (a). Find the equilibrium points of the system:

ẋ+ x3 = sin4 x

(b). Rewrite the system model

ẍ+ (x− 1)2ẋ5 + x2 = sin(πx/2)

in terms of state variables (x1, x2) = (x, ẋ). Deduce that ẋ = 0 at an

equilibrium point, and hence determine the values of x at equilibrium.

Lyapunov’s direct method, invariant sets and linearization

2. The rotational motion of a drifting spacecraft is described by the dynamics

ω̇x = aωyωz ω̇y = −bωxωz ω̇z = cωxωy

where ωx, ωy, ωz are angular velocities measured in a coordinate frame

attached to the spacecraft (Fig. 1), and a, b, c are positive constants.

(a). Determine the equilibrium points of this system.

(b). Show that the equilibrium corresponding to zero rotation (ωx = ωy =

ωz = 0) is stable.

[Hint: Try using a storage function of the form V = pω2
x +qω2

y +rω2
z

with ap−bq+cr = 0. Is V positive definite? Does it satisfy V̇ ≤ 0?]

(c). Verify that the function

V = cω2
y + bω2

z +
[
2acω2

y + abω2
z + bc(ω2

x − ω2
0)
]2

satisfies V̇ = 0 along system trajectories, for any constant ω0. What

does this tell you about the stability of non-zero rotational motion?
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Figure 1: Rotating spacecraft.

3. (a). A first order system has model

ẋ+ b(x) = 0 xb(x) > 0 for all x 6= 0

where b is a continuous function. Show that x = 0 is a globally

asymptotically stable equilibrium point.

(b). Find the equilibrium points of a second order system with model

ẍ+ b(ẋ) + c(x) = 0
ẋb(ẋ) > 0 for all ẋ 6= 0

xc(x) > 0 for all x 6= 0

where b and c are continuous functions. By applying the invariant

set theorem to the function

V (x) = 1
2ẋ

2 +

∫ x

0

c(s)ds

show that (x, ẋ) = (0, 0) is asymptotically stable. What extra con-

ditions are needed to show global asymptotic stability using V ?

4. Consider the second order system:

ẋ1 = x2

ẋ2 = −x2(x1 − 1)2 − x1(x21 − 1).
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(a). Determine the equilibrium points of the system.

(b). Use the function

V (x1, x2) = 1
4x

2
1(x

2
1 − 2) + 1

2x
2
2,

to show that every state trajectory tends to an equilibrium point.

(c). Show that the equilibrium point at (x1, x2) = (0, 0) is unstable using

Lyapunov’s linearization method.

(d). Use the function U(x1, x2) = V (x1, x2) + 1
4 to show that the other

two equilibrium points are stable.

5. A system described by the nonlinear model

ẋ = Ax+ (B + x)u A =

[
0 1

0 −1

]
B =

[
0

1

]
is to be controlled using linear state feedback u = −Kx with K = [1 1].

(a). Find the matrix Q satisfying

(A−BK)TP + P (A−BK) = −Q P =

[
2 1

1 1

]
and verify that P and Q are positive definite matrices. Use this

result to determine whether the closed loop system is stable at the

equilibrium point x = 0.

(b). Show that the storage function V = xTPx satisfies

V̇ ≤ −xTQx(1− 2|Kx|)

along trajectories of the closed loop system.

(c). Use the bound on V̇ given in part (b) to determine a region of state

space within which V̇ is negative definite. Show that

Ω = {x : xTPx ≤ α}

defines a region of attraction of x = 0 whenever α is less than some

maximum value (there is no need to determine this maximum value).
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Linear and passive systems

6. Show that the real parts of the eigenvalues of A satisfy Reλ(A) < −µ
if there exist symmetric positive definite matrices P and Q satisfying

ATP + PA+ 2µP = −Q for µ > 0.

7. The nonlinear LCR circuit shown in Figure 2 is described by the equations:

ẋ1 = x2/L

ẋ2 + x1/C + x2R1/L = e

where x1(t) is the charge on the capacitor and x2(t) is the magnetic flux

in the inductor. Capacitance C depends on x1, inductance L depends

on x2, and the resistance R1 is time-varying, with C(x1) > 0 for all x1,

L(x2) > 0 for all x2, and R1(t) > 0 for all t.

(a). Use the function:

V1(x1, x2) =

∫ x2

0

x

L(x)
dx +

∫ x1

0

x

C(x)
dx

to show that the system with e(t) as input ẋ1(t) as output is passive.

(b). For the circuit in Figure 3 with switch S closed, find a function V

satisfying

V ≥ 0, V̇ = ie− R1

L2(x2)
x22 −

R2

L2(x4)
x24

where x2, x4 are the fluxes in the two inductors. If R2(t) > 0 for all t,

what does this imply about the stability of the circuit with S open?

e

L

R1

C

Figure 2
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C

i

Figure 3
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8. A linear system with input u, output y and stable open-loop transfer

function G(s) is to be controlled via feedback u = −φ(y), where φ is a

static nonlinearity. For all ω, G(jω) lies within the bounds:

−1 < Re
[
G(jω)

]
< 2, −2 < Im

[
G(jω)

]
< 2.

(a). Show that the closed-loop system is asymptotically stable for any

function φ belonging to the sector [0, 1] or [−1
3 ,

1
2 ].

(b). Does this imply that the closed-loop system will be stable for all φ

in the sector [−1
3 , 1]? Explain your answer.
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Some answers

1. (a). x = 0 (b). (x, ẋ) = (0, 0), (1, 0)

2. (a). Any two of ωx, ωy, ωz must be zero.

4. (a). (x1, x2) = (0, 0), (1, 0), (−1, 0)

5. (a). Q =

[
2 1

1 2

]

7. (a). V =

∫ x2

0

x

L(x)
dx+

∫ x4

0

x

L(x)
dx+

∫ x1

0

x

C(x)
dx+

∫ x3

0

x

C(x)
dx

(b). The system is locally asymptotically stable (or globally asymp-

totically stable if

∫ x2

0

x

L(x)
dx→∞ as |x2| → ∞

and

∫ x1

0

x

C(x)
dx→∞ as |x1| → ∞).


