Nonlinear Systems Examples Sheet

Mark Cannon, Hilary Term 2023

Equilibrium points
1. (a). Find the equilibrium points of the system:

iz 4+ 23 =sinz

(b). Rewrite the system model
i+ (r —1)%3° + 2% = sin(nz/2)

in terms of state variables (1, x9) = (z,%). Deduce that & = 0 at an

equilibrium point, and hence determine the values of x at equilibrium.

Lyapunov’s direct method, invariant sets and linearization

2. The rotational motion of a drifting spacecraft is described by the dynamics
Wy = QWyW; wy = —bww, Wy = CWypy

where w,,w,,w, are angular velocities measured in a coordinate frame
attached to the spacecraft (Fig. 1), and a, b, ¢ are positive constants.

(a). Determine the equilibrium points of this system.

(b). Show that the equilibrium corresponding to zero rotation (w, = w, =

w, = 0) is stable.

[Hint: Try using a storage function of the form V = pw? +qw§ +rw?
with ap —bg+cr = 0. Is V positive definite? Does it satisfy V < 07]

(c). Verify that the function
V =, + bw? + [2acw] + abw? + be(w — wp)] ?

satisfies IV = 0 along system trajectories, for any constant wy. What

does this tell you about the stability of non-zero rotational motion?



3. (a).

Figure 1: Rotating spacecraft.

A first order system has model
t+b(x)=0  ab(x) >0 forall z#0

where b is a continuous function. Show that x = 0 is a globally

asymptotically stable equilibrium point.

. Find the equilibrium points of a second order system with model

tb(z) >0 forall & #0
4+ b(3) + c(z) = 0 tb(#) > 0 for all & 7
zce(x) >0 forall z #0

where b and ¢ are continuous functions. By applying the invariant

set theorem to the function
V(z) = 1d? +/ c(s)ds
0

show that (x, %) = (0,0) is asymptotically stable. What extra con-
ditions are needed to show global asymptotic stability using V7

4. Consider the second order system:

Ztlzxg

.fg = —xg(xl — 1)2 — a:l(:c% — )



(a). Determine the equilibrium points of the system.

(b). Use the function

V(zy,x0) = taf(ai — 2) + a3,

to show that every state trajectory tends to an equilibrium point.

(c). Show that the equilibrium point at (x1,z2) = (0,0) is unstable using

Lyapunov's linearization method.

(d). Use the function U(zy,x2) = V(z1,22) + 1 to show that the other

two equilibrium points are stable.

5. A system described by the nonlinear model

t=Arx+ (B+2x)u A=

4] o=l

is to be controlled using linear state feedback u = — Kz with K = [1 1].

(a). Find the matrix @ satisfying

2 1

(A-BK)'P+P(A-BK)=-Q P= [1 1]

and verify that P and () are positive definite matrices. Use this
result to determine whether the closed loop system is stable at the

equilibrium point x = 0.

(b). Show that the storage function V = 2T Pz satisfies

V < —2"Qz(1 - 2|Kx|)

along trajectories of the closed loop system.

. Use the bound on V given in part (b) to determine a region of state

space within which V is negative definite. Show that
Q={z:2"Pr<al

defines a region of attraction of x = 0 whenever « is less than some

maximum value (there is no need to determine this maximum value).



Linear and passive systems

6. Show that the real parts of the eigenvalues of A satisfy ReA(A) < —pu
if there exist symmetric positive definite matrices P and () satisfying
ATP + PA+2uP = —Q for i > 0.

7. The nonlinear LCR circuit shown in Figure 2 is described by the equations:
Zbl = $2/L
to 4+ 21/C + x9R1 /L =¢

where x1(t) is the charge on the capacitor and z5(t) is the magnetic flux
in the inductor. Capacitance C depends on z1, inductance L depends
on xs, and the resistance R; is time-varying, with C(z1) > 0 for all xy,
L(z2) > 0 for all x9, and Ry(t) > 0 for all ¢.

(a). Use the function:

T2 T I T
Vil o) = | ——d +/ d
o= [ ) o

to show that the system with e(t) as input () as output is passive.

(b). For the circuit in Figure 3 with switch S closed, find a function V'
satisfying

R, B

L2(x5)* LP(zy) ™

where 5, x4 are the fluxes in the two inductors. If Ry(t) > 0 for all ¢,

V>0, V =ie —

what does this imply about the stability of the circuit with .S open?
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8. A linear system with input u, output y and stable open-loop transfer
function G(s) is to be controlled via feedback u = —¢(y), where ¢ is a

static nonlinearity. For all w, G(jw) lies within the bounds:
—1 <Re[G(jw)] <2, —-2<Im[G(jw)] <2.

(a). Show that the closed-loop system is asymptotically stable for any

function ¢ belonging to the sector [0,1] or [—3, 3].

(b). Does this imply that the closed-loop system will be stable for all ¢

in the sector [—3,1]? Explain your answer.



Some answers
1. (a). z=0 (b). (z,%) = (0,0),(1,0)
2. (a). Any two of w,,wy,w, must be zero.

4. (a). (z1,22) = (0,0),(1,0),(—1,0)

s .02 )
7. (a). V:/Oxzﬁdxjt/omﬁdx+/0xlﬁd:c+/ox3ﬁdaz

(b). The system is locally asymptotically stable (or globally asymp-

X2
: . T
totically stable |f/ —— dx — 00 as x| — o0
0

L(x)

and /0 C’fx) dx — oo as |z1| — 00).




