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Lecture 1

Introduction and Concepts of Stability



> 4 lectures — LR2, weeks 1 & 2
Monday at 15.00 & Friday at 12.00
recordings available on Canvas

> Examples class —  LR3, week 3
Friday at 14.00, 16.00 or 17.00
sign up on Canvas



Course outline

1. Types of stability

2. Linearization

3. Lyapunov's direct method
4. Regions of attraction

5. Linear systems and passive systems



> J.-J. Slotine & W. Li Applied Nonlinear Control, Prentice-Hall 1991.
Chapters 3 & 4

> H.K. Khalil Nonlinear Systems, Prentice-Hall 1996.
Chapters 1, 3, 4, 10 and 11

> M. Vidyasagar Nonlinear Systems Analysis, Prentice-Hall 1993.
Chapter 5

> K.J. Astrom and R.M. Murray Feedback Systems: an introduction for scientists and
engineers, Princeton University Press, 2008.

Chapter 4



Why use nonlinear control?

» Real systems are nonlinear

— friction, non-ideal components
— actuator saturation
— sensor nonlinearity

» Analysis via linearization

— accuracy of approximation?
— conservative?

» Account for nonlinearities in high performance applications
— Robotics, Aerospace, Petrochemical industries, Process control, Power generation . ..

» Account for nonlinearities if linear models inadequate
— large operating region
— model properties change at linearization point



Linear systems reminder - 1/2

Linear system free response
T = Ax
Eigen-decomposition: Av; = v;\;

let V=[v1,...,05]

=[]

then A= VAV ! (if V71 exists)

= =Nz, 2=V71lx
2(t) = eM2(0)

=  x(t) = VeV 12(0)
= eAtx(0)

System is stable if Re();) < 0 Vi




Linear vs nonlinear system properties 1/2

Free response

Linear system Nonlinear system
= Ax z = f(x)
@ Unique equilibrium point: @ Multiple equilibrium points
Az =0 < z=0 flz)=0

@ Stability independent of initial conditions @ Stability dependent on initial conditions



Linear systems reminder 2/2

Linear system free response
= Az
Eigen-decomposition: Av; = v;\;

Let V = [vl,...,vn]

=[]

then A = VAV ™! (if V7! exists)

= i=Az, 2=VT'g
2(t) = e*t2(0)

= xz(t) = VetV 1z(0)
= e'z(0)

System is stable if Re(\;) < 0

Forced response
T = flx + Bu
= z(t) = / e =M Bu(h) dh
0
+ e*z(0)

If Re(A;) < 0, then the system is input-to-state
stable:

lz(®) < lle**z(0)] +sup [u(®)

=B / et ldt
0

Frequency response
& = Az + Bu
u=UW)e" = z=X(w)e"

= X(w)= (jwl — A)"'BU(w)




Linear vs nonlinear system properties 2/2

Forced response

Linear system Nonlinear system
& = Az + Bu &= f(x,u)
@ ||ul]| finite = ||z|| finite if open-loop stable @ ||ul| finite #& ||z|| finite
@ Frequency response: @ No frequency response
u=Usinwt = == Xsin(wt+ ¢) u=Usinwt # x sinusoidal
@ Superposition: @ No linear superposition

U=u +u =T =11+ T2 u=u; +uxs & x=x1+22



Example: step response

Mass-spring-damper system Equation of motion:
m + c(z) + k(z) = u

() =2z
. ) k
m — k(z) nonlinear:
> 0 T
x
Input w(t) Response z(t)
50 5
40 4
3
30 )
20 :
0
10 -1
R -2
0 5 10 15 20 ) 5 10 15 20

t t
apparent damping ratio depends on size of input step



Example: multiple equilibria

First order system: z = f(x)
f(=)
T Ip 0 Ta z
T > Tq = f(z) >0 == xz(t) increases
w<r<ze = flz)<0 = x(t) decreases
ze<z <z, = f(zg)>0 = x(t) increases
z < T =  f(z) <0 = xz(t) decreases



Example: multiple equilibria

First order system: z = f(x)
f(z)
«xc»xbko — :‘Eu»
T > T =  f(z)>0 =
m<r<r, — flx)<0 =
re<z <z, = fl&)>0 =
x < Te = f(zr)<0 =

@ x,, x. are unstable equilibrium points

@ 1} is a stable equilibrium point

x(t) increases
x(t) decreases
z(t) increases
x(t) decreases



Example: limit cycle

Van der Pol oscillator:
g+ (@ -t +x=0

@ Response z(t) tends to a limit cycle (= trajectory forming a closed curve)

@ Amplitude independent of initial conditions

X, dx/dt
o
dx/dt
o
—
-+

0 0.5 1 15 2 25 3 -3 -2 -1 0 1 2 3
t X

Response with z(0) = 0.05, ©(0) = 0.05 State trajectories (x(t), @(t))



Example: chaotic behaviour

Strange attractor




Example: chaotic behaviour

Lorenz attractor

@ Simplified model of atmospheric convection:

it =o(y—x)
y=z(p—2)—y
Z=uxy— Bz

@ State variables

z(t):  fluid velocity
y(t): difference in temperature of acsending and descending fluid

z(t):  characterizes distortion of vertical temperature profile

@ Parameters o = 10, 8 = 8/3, p = variable



Example: chaotic behaviour

Lorenz attractor

p =28 = ‘strange attractor”:

60
40

20

-20

20 -40 y



Example: chaotic behaviour

Lorenz attractor

sensitivity to initial conditions

60
40

20

-20




Example: chaotic behaviour

Lorenz attractor

.05)
.050001)

sensitivity to initial conditions  blue: (z,y,z) = (0,1
red: (z,y,2) = (0,1




Example: chaotic behaviour

Lorenz attractor

p=99.96 = limit cycle:

200
150
~ 100

50

—-40 100

60 -100 y



Example: chaotic behaviour

Lorenz attractor

p =14 = convergence to a stable equilibrium:




State space equations

A continuous-time nonlinear system

z = f(z,u,t) T : state

u : input

e.g. nth order differential equation:

dny dnfly
Ty T )
dtr N

has state vector (one possible choice)

X1 Yy
X2 Yy
xr = . =
Tn dn—ly/dtn—l
and state space dynamics:
T1 T2
T2 €3
z=1|.|= . = f(z,u,t)

In h(xl,xg,...,xn,u,t)



Equilibrium points

2™ is an equilibrium point of system & = f(z) if (and only if):

z(0) =z implies z(t)=z" V>0
ie. f(z")=0
* Consider local stability of individual equilibrium points
* Convention: define f so that x = 0 is equilibrium point of interest

* Autonomous system: & = f(x) = " = constant

Examples:

(1). 6+ ab? +Bsin@ =0  (pendulum with damping)

(2). i+ (y— 1)’y +y —sin(ry/2) =0




Equilibrium points

O %+ ah v sgrnd =0

. A 9
BTA7E: AT (3) % < 7 = [ ¢ q
9 '9) o AT "
QM % =D D 9:0 } %4:LAT) w0, 1)
w9 To 0 o

& 1+ VY sy-nllyh) =0
v

o El {:7 - (-m-’fﬁ "3 > 5liv)

SIATE L g ¢

bQm = mzo H  y=o
9~ saf{y/) = O

()

0 ? o)

2 v (7).




Stability definition

An equilibrium point z = 0 is stable iff:
max ||z(¢)|| can be made arbitrarily small

by making ||z(0)|| small enough
T

for any R > 0, there exists r > 0 so that
|2(0)] < = |lz@®)]| <R Vt>0




Stability definition

An equilibrium point z = 0 is stable iff:
max ||z(¢)|| can be made arbitrarily small

by making ||z(0)|| small enough
T

for any R > 0, there exists r > 0 so that
|2(0)] < = |lz@®)]| <R Vt>0

@ Is x = 0 a stable equilibrium for the Van der Pol oscillator example?

@ No guarantee of convergence to the equilibrium point



Asymptotic stability definition

An equilibrium point x = 0 is asymptotically stable iff:

(i). = =0s stable
(ii). [lzO)|| <r = |lz(t)]| = 0ast— oo

(i) is equivalent to:

for any R > 0,
|lz(O)]| <+ = |lz(@®)|| <R Vt>T

for some r, T'
[E

T




Exponential stability definition

An equilibrium point x = 0 is exponentially stable iff:

[zl <r = Jlz(®)] < Be”*" Vt>0

exponential stability is a special case of asymptotic stability

Il




Region of attraction

The region of attraction of z = 0 is the set of all initial conditions z(0)
for which z(t) — 0 as t — oo

region of
attraction

@ Every asymptotically stable equilibrium point has a region of attraction

@ r=o00 = entire state space is a region of attraction
=> x = 0 is globally asymptotically stable

@ Are stable linear systems asymptotically stable?



Summary

> Nonlinear state space equations: © = f(x,u)
x = state vector, u = control input

> Equilibrium points: x* is an equilibrium point
of & = f(z) if f(z*) =0

> Stable equilibrium point: z™* is stable if state trajectories starting
close to ™ remain near z* at all times

> Asymptotically stable equilibrium point: =* must be stable and state trajectories starting near z*
must tend to z* asympotically

> Region of attraction: the set of initial conditions from which state trajectories converge
asymptotically to equilibrium x*



Lecture 2

Linearization and Lyapunov's direct method



Linearization and Lyapunov’s direct method

> Review of stability definitions

>> Linearization method

> Direct method for stability

> Direct method for asymptotic stability

>> Linearization method revisited



Review of stability definitions

System: & = f(x) * unforced system (i.e. closed-loop)
* consider stability of individual equilibrium points

0 is a stable equilibrium if:

[z <r = llz@®) <R
forany R >0



Review of stability definitions

System: & = f(x) * unforced system (i.e. closed-loop)
* consider stability of individual equilibrium points

x(t)
0 is a stable equilibrium if: 0 is asymptotically stable if:
[zO)| <r = Jz@® <R [=z0)| <r = [lz@)]| =0
forany R >0 ast — 0o
Stability —  local property

Asymptotic stability —  global if r = co allowed



Review of stability definitions

NON - AUTONOMDUS SYSTeM S @ 24 = Hm\t) [non-examinable!]

¥ STABLE €QWIL B TUM N 2 >0 A v 50 THAT
P ko) Il ¢ v = Jat)) ¢4 N bz hsy.

NoNDEPendent oF £y D xco 15 MNFoamLy iR le

¥ AYMITOTICALLY STABLE £RM: 3 v So T4AT, ¥ >0 A7 8D THAT
S B R e S RT3 L R i A

LT nDEPenDdENT OF Ly = wzo> 15 uNifoaM ASIMITOUCALLT STABLE

r



Historical development of Stability Theory

@ Potential energy in conservative mechanics (Lagrange 1788):
An equilibrium point of a conservative system is stable if it corresponds to a minimum of the
potential energy stored in the system

@ Energy storage analogy for general ODEs (Lyapunov 1892)

@ Invariant sets (Lefschetz, La Salle 1960s)

J-L. Lagrange 1736-1813 A. M. Lyapunov 1857-1918 S. Lefschetz 1884-1972



Lyapunov's linearization method

@ Determine stability of equilibrium at z = 0 by analyzing the stability of the linearized system at

z = 0.

@ Jacobian linearization:

where

i = 1)
-0+

~ AT

on

of o
A=— = :
8I x=0 :

ofn

8I1

Ri(z) -0 asz —0

z + Ri(x)

o5
Oxn

Ofn

OTn

original nonlinear dynamics

Taylor's series expansion

since f(0) =0

Jacobian matrix

remainder



Taylor's Theorem reminder

— TE ) (S DEFEeeTaRle AT %=0, Taew
{0‘7: #(o’) A 23( o 4 L)
V% | e o

Witene 2a)>0 AS - O

— Mose Paecigert t bam R) - o

WUCH 1MPLEt TuaT, Fo4 4Ny €20, THeae

ExiG7S An v 50 SucH  THAT 4.“‘)

J2e b < Zuxl o oy g v syl

© foe |



Lyapunov's linearization method

Conditions on A for stability of original nonlinear system at = 0:

stability of linearization stability of nonlinear system at x = 0
Re(A(4)) <0 asymptotically stable (locally)
max Re(A(A)) =0 stable or unstable
max Re(A(A)) >0 unstable




Lyapunov's linearization method: examples

X L =T ¥ CodSw = x 0o {Coom—?ls\:vx’x] R S T 74
o
o 0w = %(1»73,,...) .
A

LneAZISATiON: 2= M = Asl =5 X=2 I8 AN UNSTASLE ERM

¥ xXiae o > i&’h(l«ex»'x"i—~~):°
2

= A4+ % +thotbt =0
= M4 R RO
LINGAZisATION ! X+ 2 =0 = A= -1, 0 = (NconClusne



Lyapunov's linearization method

@ Linearization may not provide enough information:

(stable) i=—g® I G0 (indeterminate)
(unstable) &= Incarize, 3 =0 (indeterminate)
T

higher order terms determine stability



Lyapunov's linearization method

@ Linearization may not provide enough information:

(stable) i=—g® I G0 (indeterminate)
(unstable) &= Incarize, 3 =0 (indeterminate)
T

higher order terms determine stability

@ Why does linear control work?

1. Linearize the model:

T = f(xvu)
of of

~ Az + Bu, A=22(0,0), B=7(0,0)



Lyapunov's linearization method

@ Linearization may not provide enough information:

(stable) i=—g® I G0 (indeterminate)
(unstable) &= Incarize, 3 =0 (indeterminate)
T

higher order terms determine stability

@ Why does linear control work?

1. Linearize the model:

j::f(xvu)

~ _9f _of
~ Az + Bu, A=22(0,0), B=7(0,0)

2. Design a linear feedback controller using the linearized model:

u=—Kz, maxRe(A(A- BK)) <0

closed-loop linear model strictly stable

nonlinear system @ = f(z, —Kz) is locally asymptotically stable at z =0



Lyapunov's direct method: mass-spring-damper example

k(y)

c(9)

Equation of motion:

Stored energy:

m

>
Y

mij + c(y) + k(y) =0

V = K.EE.+P.E. {



Lyapunov's direct method: mass-spring-damper example

k(y)

c(9)

m

Equation of motion:

Stored energy:

Rate of energy dissipation

but mj + k(y) = —c(y), so

>
Y

mij + c(y) + k(y) =0

\%

IN

K.E. =

b
K.E. + P.E. v
PE. = / k(y) dy
0

d df (v
l ..7.2 - 4
et +ydy [/0 k(y) dy}

mijy + yk(y)

—c(¥)y
0 + since sign(c(y)) = sign(y)



Mass-spring-damper example contd.

@ System state: e.g. x = [y 9|7

@ V(z) < 0 implies that = = 0 is stable ?—’—9
t 1 -,
V(z(t)) must decrease over time Xﬁ
contours
but of V(x)

V(x) increases with increasing ||z||




Mass-spring-damper example contd.

@ System state: e.g. x = [y 9|7

@ V(z) < 0 implies that = = 0 is stable ?F,)
t 1 -,

V(z(t)) must decrease over time Xﬁ
contours
but of V(x)

V(x) increases with increasing ||z||

@ Formal argument:
for any given R > 0:

lz|| < R whenever V(x) <V for some V'

and V(z) <V  whenever |z|| <7 for somer

SO <r = V(2(0) <V
=  V(z(t)) <V forallt>0
= |z@)|| <R forall ¢t >0



Positive definite functions

@ What if V(z) is not monotonically increasing in ||z||?

@ Same arguments apply if V(z) is continuous and positive definite, i.e.

(i). V@O =0
(i). V(z)>0 forallz#0




Positive definite functions

@ What if V(z) is not monotonically increasing in ||z||?

@ Same arguments apply if V(z) is continuous and positive definite, i.e.

(). V(@O =0
(i). V(z)>0 forallz#0

for any given V' > 0,
can always find 7 so that

V(z) <V  whenever |z|| <r

V(z) > a(||z]|) for some continuous
v and strictly increasing function (), So
\ lzll < o= (V) whenever V(z)<V




Lyapunov stability theorem

If there exists a continuous function V' (z) such that

V(z) is positive definite
V(z) <0

then z = 0 is stable.



Lyapunov stability theorem

If there exists a continuous function V' (z) such that

V(z) is positive definite
V(z) <0

then x = 0 is stable.
To show that this implies ||z(t)|| < R for all ¢ > 0 whenever ||z(0)|| < r for any R and some 7:

1. choose V as the minimum of V()
subject to ||z]| = R

2. find 7 so that V(z) < V whenever ||z| <r
3. then V(z) < 0 ensures that

V() <V V>0 if [2(0)] <r
Sz <R ¥E>0




Lyapunov stability theorem

@ Lyapunov’s direct method also applies if V (z) is locally positive definite, i.e. if

(). V(©0)=0
(ii). V(z)>0 forz#0and|z| <Ro

then z = 0 is stable if V() < 0 whenever ||z|| < Ro.

@ Apply the theorem without determining R, 7:
we only need to find p.d. V(z) satisfying V (z) < 0.



Lyapunov stability theorem

@ Lyapunov’s direct method also applies if V (z) is locally positive definite, i.e. if

(). V(©0)=0
(ii). V(z)>0 forz#0and|z| <Ro

then z = 0 is stable if V() < 0 whenever ||z|| < Ro.

@ Apply the theorem without determining R, 7:
we only need to find p.d. V(z) satisfying V (z) < 0.

@ Examples

V= %xz —  V=ui
=—a(t)z* <0
a(?)
(ii). @ =—a(z), sign(a(z)) = sign(x)
V = %ZBQ — V = xx 6] > %



Lyapunov stability theorem

@ More examples
(ii). € = —a(x), / a(x)dx >0
0

Vz/oza(m)dm =

(iv). 6+sing=0
. 9 . e .
V=%02+/ sinfdd = V =600+ 0sind
0

=0



Asymptotic stability theorem

If there exists a continuous function V' (x) such that

V(xz) is positive definite
V(z) is negative definite

then = 0 is locally asymptotically stable. ) )
(V negative definite <= —V positive definite)



Asymptotic stability theorem

If there exists a continuous function V' (x) such that

V(xz) is positive definite
V(z) is negative definite

then = 0 is locally asymptotically stable. ) )
(V negative definite <= —V positive definite)

Asymptotic convergence z(t) — 0 as ¢ — oo can be shown by contradiction:

if |z(¢)|| > R’ for all t > 0, then

V(z) < -W
} forallt >0
V(z) >V

T

contradiction




Linearization method and asymptotic stability

@ Asymptotic stability result also applies if V(x) is only locally negative definite.



Linearization method and asymptotic stability

@ Asymptotic stability result also applies if V(x) is only locally negative definite.

@ Why does the linearization method work?
* consider 1st order system: & = f(x)
linearize about z = 0: = —ax + R(z)

* assume a > 0 and try Lyapunov function V:

Viz) = %xQ

V(z) = zi = —az® + zR(z) = —2°(a — R(z)/x)
—z*(a — |R(z)/z])

IA I



Linearization method and asymptotic stability

@ Asymptotic stability result also applies if V(x) is only locally negative definite.

@ Why does the linearization method work?
* consider 1st order system: & = f(x)
linearize about z = 0: = —ax + R(z)

* assume a > 0 and try Lyapunov function V:
V() = iz
V(z) = i = —az® + zR(x) = —z*(a — R(z)/z)
—z*(a — |R(z)/z])

2

IN

* but we can choose € so that |R(x)/z| < € whenever |z| < r, so

V < —z*(a—e¢)
< —ya? witha—e=~v>0if |z| <r

—> V negative definite for |z| small enough
—> x = 0 locally asymptotically stable
Generalization to nth order systems is straightforward



Global asymptotic stability theorem

If there exists a continuous function V(x) such that

V(z) is positive definite

. . . - for all
V(x) is negative definite

V(z) = oo as ||z|| = oo

then x = 0 is globally asymptotically stable

@ If V(z) = oo as ||z|| — oo, then V (z) is radially unbounded

@ Test whether V() is radially unbounded by checking if V(z) — oo as each individual element of
z tends to infinity (necessary).



Global asymptotic stability theorem

@ Global asymptotic stability requires:
forallt >0

[z(t)]| finite { for all z(0)

not guaranteed by V negative definite
in addition to asymptotic stability of x =0

@ Hence add extra condition: V(x) — oo as ||z|| — oo
1 equiv. to
level sets {z : V(x) =V} are bounded
1 equiv. to
|lz|| is finite whenever V' (z) is finite

T :
prevents x(t) drifting away from 0 despite V < 0



Asymptotic stability example

System: @1=(z2 — 1)z}
:Béll T2

(A+a3)?  1+a3

dy=—

@ Trial Lyapunov function V(z) = 27 + 3

V(x) = 22171 + 22222
4 2
= 20t 4 2pgpt — 2 T2TL o T2 0
1 2020 (14 x%)2 1+ 22 z

T

change V' to make
these terms cancel



Asymptotic stability example

2
@ New trial Lyapunov function V(z) = 1;8_ + 3
V(m)—Z[ no_ ol ]x + 2z2%
T2 G222 2
i a3

— -2 <0
G+alf *T+a3 =
V(z) positive definite, V() negative definite = x=0Is as.
But V(x) not radially unbounded, so we can’t conclude global asymptotic stability

2

1.5¢

State trajectories: =t op




o Positive definite functions
@ Derivative of V(x) along trajectories of & = f(z)

@ Lyapunov's direct method for: stability
asymptotic stability
global stability

@ Lyapunov's linearization method



Lecture 3

Convergence and invariant sets



Convergence and invariant sets

> Review of Lyapunov's direct method

\Y

Convergence analysis using Barbalat's Lemma

Invariant sets

\Y

> Global and local invariant set theorems



Review of Lyapunov's direct method

Positive definite functions
- If
V(0)=0
V(z) >0 forallz#0
then V() is positive definite

— If S is a set containing z = 0 and
V(0)=0
V(z) >0 forallz#0,z€S
then V(z) is locally positive definite (within S)

- eg.
V(z)=z"z < positive definite

Vz)=2"2(1—2"z) < locally positive definite
within S={z : 2’z <a},a<1



Review of Lyapunov's direct method

System: & = f(z), f(0)=0

Storage function: V(x)

Time-derivative of V: V() = 2% — 9V (2)7s = VW ()" f(z)
Ox dt
—If

(i). V(x) is positive definite
(i, V(z) <0 } forallz €S

then the equilibrium = = 0 is stable

- If
(iii). V(x) is negative definite forallz e S
then the equilibrium x = 0 is asymptotically stable

- If
(iv). S = entire state space
(v). V(z) = o0 as ||z|]| = o0
then the equilibrium = 0 is globally asymptotically stable



Convergence analysis

@ What can be said about convergence of z(t) to 0
if V(z) <0 but V(x) is not negative definite?

@ Revisit m-s-d example:

)

k(y) 0 Y

c(¥) — 0 Y
Y

Equation of motion: mij + c(y) + k(y) =0

y
Storage function: V = K.E. + P.E. = img? +/ k(y) dy

V= —c()i ’



Convergence analysis

@ Vispd.and V<0so: (y,3) = (0,0) is stable
and V(y,¥) tends to a finite limit as t — oo

@ but does (y,y) converge to (0,0)?
1 equivalent to
can V(y,y) “get stuck” at V.=V #0 as t — co?

1

need to consider motion at points (y,y) for which V=0



Example

Equation of motion: mi + c(y) + k(y) =0
k(y) (9)

-
|

k(y) = 5tan™" (y/5) e(§) = 0.19(0.5 + [g])(2 — e~ 117

15

10

dy/dt
o

-5

a4

-15




Equation of motion: mi + c(y) + k(y) =0
k(y) (9)

S

k(y) = 5tan~" (/5) e(d) = 0.15(0.5 + [g) (2 — e 119

Storage function:
Y

V= %y2+/ 5tan~(y/5) dy
0

V=—c(#)j<0

dy/dt

_ 4
V =0 when y =0
but if k(y) # 0, then i £ 0, s0 V #0
U

V' continues to decrease until y =9 =10




Convergence analysis

Summary of method:

1. show that V(z) — 0 as t — oo

2. determine the set R of points z for which V(z) =0

3. identify the subset M of R for which V(z) = 0 at all future times

then z(t) has to converge to M as t — oo

This approach is the basis of the invariant set theorems



Barbalat's Lemma

For any function ¢(t), if

t
(i)- / ¢(7) dT converges to a finite limit as ¢ — oo
0

(ii). ¢(t) exists and remains finite for all ¢

then lim¢— o0 ¢(t) =0

* If ¢ is uniformly continuous, then

t
/ ¢(T)dr — constant =  ¢(t) > 0ast— oo
0
* Condition (ii) ensures that ¢(t) is uniformly continuous

t
* Without (ii) we could have / (1) dT — constant
0 ast — o0

and ¢(t) A0



Barbalat's Lemma

Example: pulse train ¢(t) = > 2 e~ 4P (t—k)2,

15

0.5F

<
—~
=
@)
) [
—
e —

o) dt

/Ot o(1)dr:

From the plots it is clear that

t
/ @(s) ds tends to a finite limit
0

but #(t) A O0ast— oo because ¢(t) — 0o ast — oo



Barbalat's Lemma

Apply Barbalat's Lemma to V(m(t)) =¢(t) <0
(a) Integrate:

/ #(s (z(t)) — V(=(0)) + finite limit as  — oo

(b) Differentiate:

d1) = V(@) = 1) L @) 1(@) + TV (@) T (@) ()

= finite for all ¢ if f(z) continuous and V (z) continuously differentiable

I

V(z) = 0ast— oo

(a) and (b) rely on ||z(¢)|| remaining finite for all ¢,

which is implied by:
V(z) positive definite
V(z) <0
V(x) = o0 as ||z]| = oo



Convergence analysis

Summary of method:

1. show that V(z) — 0 as t — oo

2. determine the set R of points  for which V(z) =0

3. identify the subset M of R for which V(z) = 0 at all future times

then z(t) has to converge to M as t — oo

This approach is the basis of the invariant set theorems



Convergence analysis

Summary of method:

1. show that V(z) —+0ast— o0
— true whenever V < 0 & V, f are smooth & ||z(t)|| is bounded
[by Barbalat's Lemma]

2. determine the set R of points  for which V(z) =0
— algebral

3. identify the subset M of R for which V(z) = 0 at all future times
— M must be invariant

then z(t) has to converge to M as t — oo

This approach is the basis of the invariant set theorems



Invariant sets

@ A set of points M in state space is invariant if

z(to) eM = z(t)eM forallt>tg

Examples:
* Equilibrium points
* Limit cycles

* If V(z) <0, then sublevel sets of V(z) are invariant

T

{z: V(z) < a} for constant «

@ If V(x) = 0 as t — oo, then

z(t) converges to an invariant set M contained within the set of points

on which V(z) =0 as t — oo




Global invariant set theorem

If there exists a continuously differentiable function V(x) such that

V(z) is positive definite

V(z) <0
V(z) = oo as ||z|| = oo

then: (i). V(z) > 0ast— oo
(ii). x(t) = M = the largest invariant set contained in R

o) ?

e V(z) negative definite =— M =0 (c.f. Lyapunov's direct method)

where R = {z : V(z) = 0}

M

@ Determine M by considering system dynamics within R



Global invariant set theorem

Revisit m-s-d example
@ V(z) is positive definite, V(z) — oo as ||z|| — oo, and

Vi, 9) = —c(9)y <0

@ therefore V — 0, implying § — 0 as ¢ — oo
ie. R={(y.9):9=0}

@ but § =0 implies § = —k(y)/m

@ therefore §j # 0 unless y = 0, so y(t) = 0 for all ¢ only if y(t) =0
ie. M={(y,9): (9 =00}

4
(y,9) = (0,0) is a globally asymptotically stable equilibrium!



Local invariant set theorem

If there exists a continuously differentiable function V(x) such that

the sublevel set Q = {z : V(z) < a} is bounded for some «
and V(z) < 0 whenever z € Q

then: (i). Q is an invariant set
(i). z(0)€Q = V(z)—>0ast— oo
(iii). x(¢t) — M = largest invariant set contained in R N {2
where R = {z : V(z) = 0}




Local invariant set theorem

@ V(z) doesn't have to be positive definite or radially unbounded

@ Result is based on Barbalat’s Lemma applied to V

T

applies here because boundedness of {2 implies [|z(¢)]| finite for all ¢
since z(0) € Q and V <0

@ ) is a region of attraction for M



Example: local invariant set theorem

@ Second order system: %1 = X2
#2 = — (21 — 1)%23 — 21 + sin(rx1/2)

@ Equilibrium points: (z1,z2) = (0,0),(1,0),(—1,0)

@ Trial storage function:
T3
V)= ad+ [ (v sintry/2) dy
0

V(z1,0)
V' is not positive definite
but V(z) — oo if z1 — 00 or z2 — o0
I
sublevel sets of V' are bounded "0 , T

z1 — sin(mz1/2)



Example: local invariant set theorem

e Differentiate: V(z) = —(z1 — 1)%z3 <0

V(@)=0 <= zeR={z:z1=1 or z2=0}

@ From the system model, z € R implies:

r1 =1 — (il,ig) = (wg,O)
and
22=0 = (&1,%2) = (0,sin(nz1/2) — x1)

z(t) remains on line z;1 =1 only if z2 =0

therefore { x(t) remains on line 22 = 0 only if z; =0, 1 or —1

= M= {(070)7 (1,0)7 (_170)}



Example: local invariant set theorem

Sysiem: A, = %
= = (w-r) 1 - saa (T /z)

'
M~ Ng‘:&fkl o (Yt %,z0

S ;"—?“n f’% .

®
Ny = =+ Sm[Tw,/2) =0 & Ko k1




Example: local invariant set theorem

@ Apply the local invariant set theorem to any sublevel set Q@ = {z : V(z) < a} containing z(0):

) is bounded

VSO } = w(t)—)M:{(O’O)7(1’O),(_17O)} ast — oo

@ For any given z(0), we can choose sufficiently large « so that Q@ = {z : V(z) < a} contains z(0)

so z(t) = M = {(0,0),(1,0),(—=1,0)} as t — oo for all 2:(0)

Can we find more precise limits for z(t)?



Example: local invariant set theorem

We have shown z(t) converges asymptotically to (0,0), (1,0) or (—1,0) but:
(a). = =(0,0) is unstable since the linearization at (0,0) has poles +,/% — 1
(b). V(z) has sublevel sets that contain only (1,0) or (—1,0)

Contours of V(x)

| ~V(x)=0

apply the local invariant set theorem to Q = {z: V(z) < a} for a <0

1

z = (1,0), z = (—1,0) are stable equilibrium points



Summary

@ Convergence analysis using Barbalat's lemma
@ Invariant sets

@ Invariant set methods for convergence analysis:
local invariant set theorem

global invariant set theorem






Lecture 4

Linear systems, passivity, and the circle criterion



Linear systems, passivity, and the circle criterion

> Summary of stability methods
> Lyapunov functions for linear systems
> Passive linear systems

> The circle criterion



Summary of stability methods

» Linearization method

& = Az is strictly stable, A = of
' ox

x = 0 locally asymptotically stable

=0

» Lyapunov’s direct method

V(z) p.d.
V(z) locally p.d. V(z) locally p.d. V(z) n.d.
V(z) <0 locally V(z) locally n.d. V(z) = oo as ||z]| = oo
U I I
x = 0 stable x = 0 locally x = 0 globally
asymptotically stable asymptotically stable
» Invariant set theorems
V(z) p.d.
V(z)<0 Q={z : V(z) < Vp} bounded
V(z) = oo as ||z|| — oo V(x) <0 forall z€Q

I

x(t) converges to the union of invariant sets contained in {z : V(z) = 0}



Summary of stability methods

» Instability theorems analogous to Lyapunov’s direct method, e.g.
.d.
= x = 0 unstable
p.d.

» Lyapunov stability criteria are only sufficient, e.g.

V(z) p.d.

V(ac) 20 } ==  x = 0 unstable

since some other V (z) demonstrating stability may exist

» Converse theorems
x =0stable =  V(x) demonstrating stability exists

since we can swap premises and conclusions in Lyapunov's direct method

... but there is no general method for constructing V' (z)



Linear systems

» For linear systems, consider quadratic storage functions V(z) = &' Px

» Only need consider symmetric P

» Need \(P) > 0 for positive definite V() = 2" Pz



Linear systems

» For linear systems, consider quadratic storage functions V(z) = &' Px

If € = Ax is strictly stable then 3P such that: V(z) is positive definite
and V (z) is negative definite

» Only need consider symmetric P

2'Pr=1L12"Pr+ iz PTz=1zT (P+ Pz
——
SYMMETRIC
» Need \(P) > 0 for positive definite V() = 2" Pz
P=UAUT eigenvector/value decomposition
U
x ' Pr =z Az z2=U"x
I

x " Pz positive definite notation: P > 0
iff Ay; >0 or “P is a positive definite matrix”



Linear systems

» A systematic method for computing P

T = Az . V(z) =a"Pi+i' Px
V(z)=a'Px =2 (PA+A"P)x

..z = 0 is globally asymptotically stable if, for some Q:

PA+ATP=-Q Q=Q" >0

Lyapunov matrix equation

» Pick Q@ > 0 and solve PA+ ATP = —Q for P, then

unique solution for P

Re[A(4)]< 0 = ad PP >0




Linear systems

Cthm v PA+ AP = «Q uAs A waDuE Sowmion P > O Tt e Q>0
¥ Ao oy TF e [MA)) <0



Linear systems

Cloamt + PA4 AP = - Q HAS A uhDue Sowmion P > O Tou gveaf Q>0

¥ AnD oY TF (e [%(/’t)] <0

Croof: ket a= A% AND =% AP

© ® PAL AP =-Q wity PR >0 Ten:
\V 15 PosyTwE DEEINITE
Ao Voo faT (FPePA)x =) o' Qx

50 46[7\[4\)] 0

1S NEGATINE OECOOTL
RY LYAPUNN'S Dv2ELT méTy od
@  F 2efa])] <o Tyen

2ak) = QAt %x(S) ANO V= -‘ix'a'x mPLES
Ll -~
(7 Ve ar =

-1 oo [Tttt ab we
LoNE) - Uw N(E) = o) 21)'” QM g wo)
> A ; ° )

=0

=e
5ON = x"Px AND P30 IF OO



Example: Lyapunov matrix equation

Stable linear system & = Ax: [961] = {O _16] {ml] MA) = —1+4V/15

T2 1 —2 X2

Choose @ and solve PA+ AT P = —Q for P:

_ |10 _ | 033 —05 _ | 0.41 —0.19 _ | 012 —o0.21
Q= [0 1] = b= [—045 4.25}» Q2 = [—0.19 0.11 ] = P = [—0.21 1.67 ]

6 z" Pz =
a constant
5
2
S <0
T
-2 x Pix = N
» constant
-10]
- z(t) (t)
S 20  -10 10 20 30 =) 0 50

any choice of @ > 0 gives P > 0 if A is strictly stable
(but not every P = 0 gives Q > 0)



Passive systems

Systematic method for constructing storage functions

based on the input-output representation of a system:

LN system v, Input: u
output: y

The system mapping u to y is:

— Passive if

V=yu—g with V(t)>0, g(t)>0
here V is the “storage function”

— Strictly passive® if it is passive with
¢ t
/ gdtze/ u? dt for all u, for all t > 0, and some € > 0
0 0

(*some other names for this property: “strictly input passive” or “dissipative with dissipation €”)



Passive systems

» Passivity is motivated by electrical networks with no internal power generation

g

input: ¢

t
stored energy: V = vidt >0
v output: v ' o

V = iv = net power input

» Passive mechanical systems (robotics, automotive, aerospace ...)

e.g. passive m-s-d system mapping input F' to output ¥:

k . . _
By mit + o(#) + k(z) = F
m < F yk(y) 20
o(9) ye(®) =20
7
Y
V=comi®+ | k(@)de = V=Fy—yc)
0



Passive systems

Passivity is closely related to Lyapunov stability:

> Storage function for a passive system: > Lyapunov function V(z) for a stable system:
V<yu V<0
rate of energy increase is less than input power energy decreases with time

> Note that passivity doesn’t require V(z) to be positive definite in general



Passive systems

Passivity allows storage functions to be determined for feedback systems

(1) Closed-loop system with passive subsystems Si and Sa:

r=0 +_ u s Y1 Y
- Si: Vi>0 Vi=yiui—q

So: Va>0 Vo=1yous —go

Y2 S

Vi+Ve2>0
V1+V2:y1u1+y2u2791792
=y1(~y2) + Y201 — g1 — g2
= —01 — g2
<0

— V = Vi + Vs is a Lyapunov function for the closed-loop system
if V is a positive definite function of the state of (51, S2)



Interconnected passive systems

(2) Parallel connection:

u,l g, Y1 Vi+Va2>0
N + g V1+V2:y1u1+y2u2*g1792
+ =W +y2)u—g1— g2
2l 5, |2 =yu—g1 — g2
U

Overall system from u to y is passive

(3) Feedback connection:

v fo Ul g Y1 Y i+Ve>0
B V1+Vz:y1u1+y21m—gl—gz
=y(u—y2) + Y29 — g1 — g2
Y2 S u2 — — _
2 =Yu —gir — g2

¢

Overall system from u to y is passive



Passive linear systems

Transfer function : % = H(s) LN H(s) Y,
» H is passive if and only if
(). Re(p) <0 for all poles p; of H(s)

(i). Re[H(jw)] >0 forall0 <w< oo

t
* H must be stable, otherwise V (t) = / yu dt is not defined for all u
0

* From Parseval's theorem: .
Re[H(jw)] >0 <= / yu dt > 0 for all u(t) and ¢
0
T

frequency domain condition for passivity

H is called a “positive real” system



Passive linear systems

Y(s)

Y(s) 5 _u o LY

Transfer function :

» H is strictly passsive (also called “strictly positive real”) if Re(p;) < 0 and

Re[H(jw)] >0  forall 0 <w < oo

» Kalman-Yakubovich-Popov (KYP) Lemma implies

If H is strictly passive, then there exist P > 0 and @ > 0 such that

V=zg"Prand V=yu—z'Qz

* x is the state of any controllable & observable state space realization of H

* x = 0 is globally asymptotically stable with any passive output feedback law u = —¢(y)



Linear system + static nonlinearity

H Y H linear: ;’(s) = H(s)

é ¢ static nonlinearity: z=¢(y)
Yy

What are the conditions on H and ¢ for closed-loop stability?

@ A common problem in practice, due to e.g.

* actuator saturation (valves, dc motors, etc.)
* sensor nonlinearity

@ Determine closed-loop stability given:

¢ belongs to sector [a, D] z by
T #(y)
ay
a< W oy 0 Y
Yy
“Absolute stability problem”



Linear system + static nonlinearity

@ Aizerman’s conjecture (1949):

Closed-loop system is stable if stable for ¢(y) = ky, for all constant k € [a, b]
this is false (it's necessary but not sufficient)
@ Sufficient conditions for closed-loop stability:

Popov criterion (1960) based on passivity
Circle criterion

@ The passivity approach:

(1). If H is strictly passive, then P,Q > 0 exist so that V = 2" Pz satisfies
V=yu— z' Qu

= —yoly) —2' Qu
o(y)
(2). If ¢ belongs to sector [0, 00), then: y¢(y) > 0 3
&2 = V<—2'Qu

—> x = 0 is globally asymptotically stable



Circle criterion

H not passive

¢ & 10,00)

Use loop transformations to generalize the approach for {

equiv. to

¢ € [a,b] a,b arbitrary




Circle criterion

To make H'(jw) = 1 +h;(l{;8'tu) + b i p strictly passive, need:
. H(jw)
. H I —_— I
(M stable <— T aH () stable
i

Nyquist plot of H(jw) goes through v anti-clockwise encirclements of —1/a
as w goes from —oo to oo (v = no. poles of H(jw) in RHP)

.. y H(jw) lies outside D(a,b) if ab> 0
(i) Re[H'(jw)] >0 <= { H(jw) lies inside D(a,b)  if ab< 0

Im[H (jw)]

U 0  Re[H(jw)]
_ 1 /[

D(a,b)

D

o=




Graphical interpretation of circle criterion

x = 0 is globally asymptotically stable if:

» O0<a<band

H(jw) lies in shaded region and does v
anti-clockwise encirclements of D(a,b)

» b>a=0and

H(jw) lies in shaded region and v =0
(can't encircle —1/a)

» a<0<band

H(jw) lies in shaded region and v = 0
(can't encircle —1/a)

» a<b<0and

—H(jw) lies in shaded region and does v
anti-clockwise encirclements of D(—b, —a)

=

o=

o

| o
ol
=

Sl

Im
0 Re
Im
0 Re
Im
1 Re
a
Im
0 Re




Circle criterion

> Circle criterion is equivalent to Nyquist criterion fora =b >0
T
1 . .
D(a,b) = —— (single point)
a

> Circle criterion is only sufficient for closed-loop stability for general a, b

> Results apply to time-varying static nonlinearity: ¢(y,t)



Example: Active suspension system

> Active suspension system for high-speed train:

carriage body

- Q = ¢(u)
%Q Tqg = Q/A
x hydraulic u : valve input signal
actuator : P g
Q : flow rate
| © ¢ : valve characteristics, ¢ € [0.005,0.1]
A : actuator working area
wheel

> Force exerted by suspension system on carriage body: Fyusp
Fasp = k(xa — ) + (e — )
¢
:(k/det—i—cQ)/A—kac—ci’7 Q = ¢(u)

> Design controller to compensate for the effects of (constant) unknown load on displacement x
despite uncertain valve characteristics ¢(u).



Active suspension system contd.

> Dynamics:
F:susp — F=m&

= mjé+c:b+kx=(k‘/tht—i—cQ)/A—E Q= ¢(u)

F' : unknown load on suspension unit
m : effective carriage mass

> Transfer function model:

cs+k Q(s) F _
ms?2+cs+k As ms2+cs+k Q= ¢(u)

X(s) =

> Try linear compensator C/(s):
U(s) = C(s)E(s) e= —x, setpoint: x =0

F

- 1 T

Lo~ CEN O AN b g W .

C
_T () As ms2 +cs+ k




Active suspension system contd.

> For constant F', we need to stabilize the closed-loop system:

cs+ k 1 —x u
_ As ms?2 +cs+k o)
© o)
linear system:  H(s) cs Tk C(s)

- As(ms® +cs+ k)
static nonlinearity: ¢ € [0.005,0.1]

> P+D compensator (no integral term needed):

Cls)=K(l+as) = H(s)= igtggi(cfi :))

H open-loop stable (v = 0)

> From the circle criterion, closed-loop (global asymptotic) stability is ensured if:
H(jw) lies outside D(0.005,0.1)
T

sufficient condition: Re[H (jw)] > —10



Active suspension system contd.

> Nyquist plot of H(jw) for K =1 and o = 0,0.2,0.4,0.8:

5 ; ; —
a=0 i
ok

_5, |

-101 a=0.2

Im[H (jw)] oy

|
! a=04
-20t ‘
I
o5l
|
-30 ‘
| a=0.8
-35 ‘
,40 L L L ! L L L T L
<10 8 6 -4 -2 0 2 4 6 8 10
Re [H(Jw)]
> To maximize gain margin:
choose a=0.2 < allows for largest K

K <10/3.4=294



Summary

At the end of the course you should be able to do the following:

>

>

Understand the basic Lyapunov stability definitions
Analyse stability using the linearization method
Analyse stability by Lyapunov's direct method
Determine convergence using Barbalat's Lemma

Understand how invariant sets can determine regions of attraction

Construct Lyapunov functions for linear systems and passive systems

Use the circle criterion to design controllers for systems with static nonlinearities

(lecture 1)
(lecture 2)
(lecture 2)

(lecture 3)

(lecture 3)

(lecture 4)
(lecture 4)



