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Lecture 1

Introduction and Concepts of Stability
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Organisation

B 4 lectures – LR2, weeks 1 & 2

Monday at 15.00 & Friday at 12.00

recordings available on Canvas

B Examples class – LR3, week 3

Friday at 14.00, 16.00 or 17.00

sign up on Canvas
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Course outline

1. Types of stability

2. Linearization

3. Lyapunov’s direct method

4. Regions of attraction

5. Linear systems and passive systems
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Books

B J.-J. Slotine & W. Li Applied Nonlinear Control, Prentice-Hall 1991.

Chapters 3 & 4

B H.K. Khalil Nonlinear Systems, Prentice-Hall 1996.

Chapters 1, 3, 4, 10 and 11

B M. Vidyasagar Nonlinear Systems Analysis, Prentice-Hall 1993.

Chapter 5

B K.J. Astrom and R.M. Murray Feedback Systems: an introduction for scientists and
engineers, Princeton University Press, 2008.

Chapter 4
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Why use nonlinear control?

I Real systems are nonlinear

– friction, non-ideal components
– actuator saturation
– sensor nonlinearity

I Analysis via linearization

– accuracy of approximation?
– conservative?

I Account for nonlinearities in high performance applications

– Robotics, Aerospace, Petrochemical industries, Process control, Power generation . . .

I Account for nonlinearities if linear models inadequate

– large operating region
– model properties change at linearization point
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Linear systems reminder - 1/2

Linear system free response

ẋ = Ax
Eigen-decomposition: Avi = viλi

let V =
[
v1, . . . , vn

]
Λ =

[ λ1

. . .
λn

]
then A = V ΛV −1 (if V −1 exists)

⇒ ż = Λz, z = V −1x

z(t) = eΛtz(0)

⇒ x(t) = V eΛtV −1x(0)

= eAtx(0)

System is stable if Re(λi) < 0 ∀i
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Linear vs nonlinear system properties 1/2

Free response

Linear system

ẋ = Ax

Nonlinear system

ẋ = f(x)

Unique equilibrium point:
Ax = 0 ⇐⇒ x = 0

Multiple equilibrium points
f(x) = 0

Stability independent of initial conditions Stability dependent on initial conditions
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Linear systems reminder 2/2

Linear system free response
ẋ = Ax

Eigen-decomposition: Avi = viλi

Let V =
[
v1, . . . , vn

]
Λ =

[ λ1

. . .
λn

]
then A = V ΛV −1 (if V −1 exists)

⇒ ż = Λz, z = V −1x

z(t) = eΛtz(0)

⇒ x(t) = V eΛtV −1x(0)

= eAtx(0)

System is stable if Re(λi) < 0

Forced response
ẋ = Ax+Bu

⇒ x(t) =

∫ t

0

eA(t−h)Bu(h) dh

+ eAtx(0)

If Re(λi) < 0, then the system is input-to-state
stable:

‖x(t)‖ ≤ ‖eAtx(0)‖+ γ sup
t≥0
‖u(t)‖

γ = ‖B‖
∫ ∞

0

‖eAt‖dt

Frequency response
ẋ = Ax+Bu

u = U(ω)ejωt ⇒ x = X(ω)ejωt

⇒ X(ω) = (jωI −A)−1BU(ω)
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Linear vs nonlinear system properties 2/2

Forced response

Linear system

ẋ = Ax+Bu

Nonlinear system

ẋ = f(x, u)

‖u‖ finite ⇒ ‖x‖ finite if open-loop stable ‖u‖ finite 6⇒ ‖x‖ finite

Frequency response:
u = U sinωt ⇒ x = X sin(ωt+ φ)

No frequency response
u = U sinωt 6⇒ x sinusoidal

Superposition:
u = u1 + u2 ⇒ x = x1 + x2

No linear superposition
u = u1 + u2 6⇒ x = x1 + x2
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Example: step response

Mass-spring-damper system

m

k(x)

c(ẋ)
-
x

� u

Equation of motion:
mẍ+ c(ẋ) + k(x) = u

c(ẋ) = ẋ

k(x) nonlinear: k

0 x

Input u(t)
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apparent damping ratio depends on size of input step
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Example: multiple equilibria

First order system: ẋ = f(x)

0

f(x)

xxaxbxc

x > xa =⇒ f(x) > 0 =⇒ x(t) increases
xb < x < xa =⇒ f(x) < 0 =⇒ x(t) decreases
xc < x < xb =⇒ f(x) > 0 =⇒ x(t) increases
x < xc =⇒ f(x) < 0 =⇒ x(t) decreases

xa, xc are unstable equilibrium points

xb is a stable equilibrium point
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Example: limit cycle

Van der Pol oscillator:
ẍ+ (x2 − 1)ẋ+ x = 0

Response x(t) tends to a limit cycle (= trajectory forming a closed curve)

Amplitude independent of initial conditions
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−3
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−1

0
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3

t

x,
 d

x/
dt

Response with x(0) = 0.05, ẋ(0) = 0.05
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−4
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x
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/d

t

6 6 ?

State trajectories
(
x(t), ẋ(t)

)
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Example: chaotic behaviour

Strange attractor
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Example: chaotic behaviour

Lorenz attractor

Simplified model of atmospheric convection:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

State variables

x(t): fluid velocity

y(t): difference in temperature of acsending and descending fluid

z(t): characterizes distortion of vertical temperature profile

Parameters σ = 10, β = 8/3, ρ = variable
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Example: chaotic behaviour

Lorenz attractor

ρ = 28 =⇒ “strange attractor”:
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Example: chaotic behaviour

Lorenz attractor

sensitivity to initial conditions
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Example: chaotic behaviour

Lorenz attractor

sensitivity to initial conditions blue: (x, y, z) = (0, 1, 1.05)
red: (x, y, z) = (0, 1, 1.050001)
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Example: chaotic behaviour

Lorenz attractor

ρ = 99.96 =⇒ limit cycle:
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Example: chaotic behaviour

Lorenz attractor

ρ = 14 =⇒ convergence to a stable equilibrium:
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State space equations

A continuous-time nonlinear system

ẋ = f(x, u, t) x : state

u : input

e.g. nth order differential equation:

dny

dtn
= h

(
y, . . . ,

dn−1y

dtn−1
, u, t

)
has state vector (one possible choice)

x =


x1

x2

...
xn

 =


y
ẏ
...

dn−1y/dtn−1


and state space dynamics:

ẋ =


ẋ1

ẋ2

...
ẋn

 =


x2

x3

...
h
(
x1, x2, . . . , xn, u, t

)
 = f(x, u, t)
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Equilibrium points

x∗ is an equilibrium point of system ẋ = f(x) if (and only if):

x(0) = x∗ implies x(t) = x∗ ∀t > 0
i.e. f(x∗) = 0

? Consider local stability of individual equilibrium points

? Convention: define f so that x = 0 is equilibrium point of interest

? Autonomous system: ẋ = f(x) =⇒ x∗ = constant

Examples:

(1). θ̈ + αθ̇2 + β sin θ = 0 (pendulum with damping)

x =

[
θ

θ̇

]
, x∗ =

[
nπ
0

]
, n = 0,±1

(2). ÿ + (y − 1)2ẏ + y − sin(πy/2) = 0

x =

[
y
ẏ

]
, x∗ =

[
0
0

]
,

[
−1
0

]
,

[
1
0

]
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Equilibrium points
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Stability definition

An equilibrium point x = 0 is stable iff:

max
t
‖x(t)‖ can be made arbitrarily small

by making ‖x(0)‖ small enough

m

for any R > 0, there exists r > 0 so that
‖x(0)‖ < r =⇒ ‖x(t)‖ < R ∀t > 0

0

r

R

x(0)

x(t)

Is x = 0 a stable equilibrium for the Van der Pol oscillator example?

No guarantee of convergence to the equilibrium point
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Asymptotic stability definition

An equilibrium point x = 0 is asymptotically stable iff:

(i). x = 0 is stable
(ii). ‖x(0)‖ < r =⇒ ‖x(t)‖ → 0 as t→∞

(ii) is equivalent to:

for any R > 0,
‖x(0)‖ < r =⇒ ‖x(t)‖ < R ∀t > T

for some r, T

tT

R

r

‖x‖

0
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Exponential stability definition

An equilibrium point x = 0 is exponentially stable iff:

‖x(0)‖ < r =⇒ ‖x(t)‖ ≤ βe−αt ∀t > 0

exponential stability is a special case of asymptotic stability

t

r

‖x‖

0

βe−αt

�
��
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Region of attraction

The region of attraction of x = 0 is the set of all initial conditions x(0)
for which x(t)→ 0 as t→∞

0

@@I
region of

attraction

x(0)

x(t)

Every asymptotically stable equilibrium point has a region of attraction

r =∞ =⇒ entire state space is a region of attraction
=⇒ x = 0 is globally asymptotically stable

Are stable linear systems asymptotically stable?
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Summary

B Nonlinear state space equations: ẋ = f(x, u)
x = state vector, u = control input

B Equilibrium points: x∗ is an equilibrium point
of ẋ = f(x) if f(x∗) = 0

B Stable equilibrium point: x∗ is stable if state trajectories starting
close to x∗ remain near x∗ at all times

B Asymptotically stable equilibrium point: x∗ must be stable and state trajectories starting near x∗

must tend to x∗ asympotically

B Region of attraction: the set of initial conditions from which state trajectories converge
asymptotically to equilibrium x∗
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Lecture 2

Linearization and Lyapunov’s direct method
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Linearization and Lyapunov’s direct method

B Review of stability definitions

B Linearization method

B Direct method for stability

B Direct method for asymptotic stability

B Linearization method revisited
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Review of stability definitions

System: ẋ = f(x) ? unforced system (i.e. closed-loop)
? consider stability of individual equilibrium points

0

r

R

x(0)

x(t)

0

r

x(0)

x(t)

0 is a stable equilibrium if:

‖x(0)‖ ≤ r =⇒ ‖x(t)‖ ≤ R
for any R > 0

0 is asymptotically stable if:

‖x(0)‖ ≤ r =⇒ ‖x(t)‖ → 0
as t→∞

Stability → local property
Asymptotic stability → global if r =∞ allowed
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Review of stability definitions
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Historical development of Stability Theory

Potential energy in conservative mechanics (Lagrange 1788):

An equilibrium point of a conservative system is stable if it corresponds to a minimum of the
potential energy stored in the system

Energy storage analogy for general ODEs (Lyapunov 1892)

Invariant sets (Lefschetz, La Salle 1960s)

J-L. Lagrange 1736-1813 A. M. Lyapunov 1857-1918 S. Lefschetz 1884-1972

2 - 5



Lyapunov’s linearization method

Determine stability of equilibrium at x = 0 by analyzing the stability of the linearized system at
x = 0.

Jacobian linearization:

ẋ = f(x) original nonlinear dynamics

= f(0) +
∂f

∂x

∣∣∣
x=0

x+R1(x) Taylor’s series expansion

≈ Ax since f(0) = 0

where

A =
∂f

∂x

∣∣∣
x=0

=


∂f1

∂x1
· · · ∂f1

∂xn
...

. . .
...

∂fn
∂x1

· · · ∂fn
∂xn

 Jacobian matrix

R1(x)→ 0 as x→ 0 remainder
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Taylor’s Theorem reminder���������� F��
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Lyapunov’s linearization method

Conditions on A for stability of original nonlinear system at x = 0:

stability of linearization stability of nonlinear system at x = 0

Re
(
λ(A)

)
< 0 asymptotically stable (locally)

max Re
(
λ(A)

)
= 0 stable or unstable

max Re
(
λ(A)

)
> 0 unstable
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Lyapunov’s linearization method: examples
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Lyapunov’s linearization method

Linearization may not provide enough information:

(stable) ẋ = −x3 linearize−−−−→ ẋ = 0 (indeterminate)

(unstable) ẋ = x3 linearize−−−−→ ẋ = 0 (indeterminate)
↑

higher order terms determine stability

Why does linear control work?

1. Linearize the model:

ẋ = f(x, u)

≈ Ax+Bu, A =
∂f

∂x
(0, 0), B =

∂f

∂u
(0, 0)

2. Design a linear feedback controller using the linearized model:

u = −Kx, max Re
(
λ(A−BK)

)
< 0

closed-loop linear model strictly stable

nonlinear system ẋ = f(x,−Kx) is locally asymptotically stable at x = 0
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Lyapunov’s direct method: mass-spring-damper example

m

k(y)

c(ẏ) -
y

-

-

6

6

y

ẏ

c(ẏ)

k(y)

0

0

Equation of motion: mÿ + c(ẏ) + k(y) = 0

Stored energy: V = K.E. + P.E.

{ K.E. = 1
2
mẏ2

P.E. =

∫ y

0

k(y) dy

Rate of energy dissipation V̇ = 1
2
mÿ

d

dẏ
ẏ2 + ẏ

d

dy

[∫ y

0

k(y) dy

]
= mÿẏ + ẏk(y)

but mÿ + k(y) = −c(ẏ), so V̇ = −c(ẏ)ẏ

≤ 0 ← since sign
(
c(ẏ)

)
= sign(ẏ)
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Mass-spring-damper example contd.

System state: e.g. x = [y ẏ]T

V̇ (x) ≤ 0 implies that x = 0 is stable
↑

V (x(t)) must decrease over time
but

V (x) increases with increasing ‖x‖

0
y

ẏ

contours
of V (x)

Formal argument:

for any given R > 0:

‖x‖ < R whenever V (x) < V for some V

and V (x) < V whenever ‖x‖ < r for some r

∴ ‖x(0)‖ < r =⇒ V
(
x(0)

)
< V

=⇒ V
(
x(t)

)
< V for all t > 0

=⇒ ‖x(t)‖ < R for all t > 0
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Positive definite functions

What if V (x) is not monotonically increasing in ‖x‖?
Same arguments apply if V (x) is continuous and positive definite, i.e.

(i). V (0) = 0
(ii). V (x) > 0 for all x 6= 0

−r r x

V

V

AAU

for any given V > 0,
can always find r so that

V (x) < V whenever ‖x‖ < r

−α−1(V ) α−1(V )
x

V

V

AAU

V (x) ≥ α(‖x‖) for some continuous
and strictly increasing function α(·), So
‖x‖ < α−1(V ) whenever V (x) < V
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Lyapunov stability theorem

If there exists a continuous function V (x) such that

V (x) is positive definite

V̇ (x) ≤ 0

then x = 0 is stable.

To show that this implies ‖x(t)‖ < R for all t > 0 whenever ‖x(0)‖ < r for any R and some r:

1. choose V as the minimum of V (x)
subject to ‖x‖ = R

2. find r so that V (x) < V whenever ‖x‖ < r

3. then V̇ (x) ≤ 0 ensures that

V
(
x(t)

)
< V ∀t > 0 if ‖x(0)‖ < r

∴ ‖x(t)‖ < R ∀t > 0

0

r

R

V (x) = V

SS
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Lyapunov stability theorem

Lyapunov’s direct method also applies if V (x) is locally positive definite, i.e. if

(i). V (0) = 0
(ii). V (x) > 0 for x 6= 0 and ‖x‖ < R0

then x = 0 is stable if V̇ (x) ≤ 0 whenever ‖x‖ < R0.

Apply the theorem without determining R, r:

we only need to find p.d. V (x) satisfying V̇ (x) ≤ 0.

Examples

(i). ẋ = −a(t)x, a(t) > 0

V = 1
2
x2 =⇒ V̇ = xẋ

= −a(t)x2 ≤ 0

(ii). ẋ = −a(x), sign
(
a(x)

)
= sign(x)
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V = 1
2
x2 =⇒ V̇ = xẋ

= −a(x)x ≤ 0
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Lyapunov stability theorem
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= −a(t)x2 ≤ 0
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Lyapunov stability theorem

More examples

(iii). ẋ = −a(x),

∫ x

0

a(x) dx > 0
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V =

∫ x

0

a(x) dx =⇒ V̇ = a(x)ẋ

= −a2(x) ≤ 0

(iv). θ̈ + sin θ = 0

V = 1
2
θ̇2 +

∫ θ

0

sin θ dθ =⇒ V̇ = θ̈θ̇ + θ̇ sin θ

= 0
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Asymptotic stability theorem

If there exists a continuous function V (x) such that

V (x) is positive definite

V̇ (x) is negative definite

then x = 0 is locally asymptotically stable.
(V̇ negative definite ⇐⇒ −V̇ positive definite)

Asymptotic convergence x(t)→ 0 as t→∞ can be shown by contradiction:

if ‖x(t)‖ > R′ for all t ≥ 0, then

V̇ (x) < −W

V (x) ≥ V

}
for all t ≥ 0

↑
contradiction

0
R′

r = ‖x(0)‖

V (x) = V

��
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Linearization method and asymptotic stability

Asymptotic stability result also applies if V̇ (x) is only locally negative definite.

Why does the linearization method work?

? consider 1st order system: ẋ = f(x)
linearize about x = 0: = −ax+R(x)

? assume a > 0 and try Lyapunov function V :

V (x) = 1
2
x2

V̇ (x) = xẋ = −ax2 + xR(x) = −x2(a−R(x)/x)
≤ −x2(a− |R(x)/x|)

? but we can choose ε so that |R(x)/x| < ε whenever |x| ≤ r, so

V̇ ≤ −x2(a− ε)
≤ −γx2 with a− ε = γ > 0 if |x| ≤ r

=⇒ V̇ negative definite for |x| small enough
=⇒ x = 0 locally asymptotically stable

Generalization to nth order systems is straightforward
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Global asymptotic stability theorem

If there exists a continuous function V (x) such that

V (x) is positive definite

V̇ (x) is negative definite

}
for all x

V (x)→∞ as ‖x‖ → ∞

then x = 0 is globally asymptotically stable

If V (x)→∞ as ‖x‖ → ∞, then V (x) is radially unbounded

Test whether V (x) is radially unbounded by checking if V (x)→∞ as each individual element of
x tends to infinity (necessary).
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Global asymptotic stability theorem

Global asymptotic stability requires:

‖x(t)‖ finite

{
for all t > 0
for all x(0)
↑

not guaranteed by V̇ negative definite

in addition to asymptotic stability of x = 0

Hence add extra condition: V (x)→∞ as ‖x‖ → ∞

l equiv. to

level sets {x : V (x) = V } are bounded

l equiv. to

‖x‖ is finite whenever V (x) is finite

↑
prevents x(t) drifting away from 0 despite V̇ < 0
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Asymptotic stability example

System: ẋ1=(x2 − 1)x3
1

ẋ2=− x4
1

(1 + x2
1)2
− x2

1 + x2
2

Trial Lyapunov function V (x) = x2
1 + x2

2:

V̇ (x) = 2x1ẋ1 + 2x2ẋ2

= −2x4
1 + 2x2x

4
1 − 2

x2x
4
1

(1 + x2
1)2
− 2

x2
2

1 + x2
2

6≤ 0

︸ ︷︷ ︸
↑

change V to make
these terms cancel
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Asymptotic stability example

New trial Lyapunov function V (x) =
x2

1

1 + x2
1

+ x2
2:

V̇ (x) = 2
[ x1

1 + x2
1

− x3
1

(1 + x2
1)2

]
ẋ1 + 2x2ẋ2

= −2
x4

1

(1 + x2
1)2
− 2

x2
2

1 + x2
2

≤ 0

V (x) positive definite, V̇ (x) negative definite =⇒ x = 0 is a.s.

But V (x) not radially unbounded, so we can’t conclude global asymptotic stability

State trajectories:

−10 −5 0 5 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

V0 = 0.5
��
�

V0 = 3

V0 = 1

V0 = 1

V0 = 3

XXz

��=
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Summary

Positive definite functions

Derivative of V (x) along trajectories of ẋ = f(x)

Lyapunov’s direct method for: stability
asymptotic stability
global stability

Lyapunov’s linearization method
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Lecture 3

Convergence and invariant sets
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Convergence and invariant sets

B Review of Lyapunov’s direct method

B Convergence analysis using Barbalat’s Lemma

B Invariant sets

B Global and local invariant set theorems

3 - 2



Review of Lyapunov’s direct method

Positive definite functions

– If

V (0) = 0
V (x) > 0 for all x 6= 0

then V (x) is positive definite

– If S is a set containing x = 0 and

V (0) = 0
V (x) > 0 for all x 6= 0, x ∈ S

then V (x) is locally positive definite (within S)

– e.g.

V (x) = x>x ← positive definite

V (x) = x>x(1− x>x) ← locally positive definite
within S = {x : x>x ≤ α}, α < 1
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Review of Lyapunov’s direct method

System: ẋ = f(x), f(0) = 0

Storage function: V (x)

Time-derivative of V : V̇ (x) =
∂V

∂x

dx

dt
= ∇V (x)>ẋ = ∇V (x)>f(x)

– If
(i). V (x) is positive definite

(ii). V̇ (x) ≤ 0

}
for all x ∈ S

then the equilibrium x = 0 is stable

– If

(iii). V̇ (x) is negative definite for all x ∈ S
then the equilibrium x = 0 is asymptotically stable

– If
(iv). S = entire state space
(v). V (x)→∞ as ‖x‖ → ∞

then the equilibrium x = 0 is globally asymptotically stable
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Convergence analysis

What can be said about convergence of x(t) to 0
if V̇ (x) ≤ 0 but V̇ (x) is not negative definite?

Revisit m-s-d example:

m

k(y)

c(ẏ) -
y

-

-

6

6

y

ẏ

c(ẏ)

k(y)

0

0

Equation of motion: mÿ + c(ẏ) + k(y) = 0

Storage function: V = K.E. + P.E. = 1
2
mẏ2 +

∫ y

0

k(y) dy

V̇ = −c(ẏ)ẏ
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Convergence analysis

V is p.d. and V̇ ≤ 0 so: (y, ẏ) = (0, 0) is stable

and V (y, ẏ) tends to a finite limit as t→∞

but does (y, ẏ) converge to (0, 0)?

l equivalent to

can V (y, ẏ) “get stuck” at V = V0 6= 0 as t→∞?

↓

need to consider motion at points (y, ẏ) for which V̇ = 0
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Example

Equation of motion: mÿ + c(ẏ) + k(y) = 0
k(y)

y

k(y) = 5 tan−1(y/5)

c(ẏ)

ẏ

c(ẏ) = 0.1ẏ(0.5 + |ẏ|)(2− e−0.1|ẏ|)

−20 −10 0 10 20
−15

−10

−5

0

5

10

15

y

dy
/d

t

x(t) B
BM

Storage function:

V = 1
2
ẏ2 +

∫ y

0

5 tan−1(y/5) dy

V̇ = −c(ẏ)ẏ ≤ 0
↓

V̇ = 0 when ẏ = 0

but if k(y) 6= 0, then ÿ 6= 0, so V̈ 6= 0
⇓

V continues to decrease until y = ẏ = 0

3 - 7



Example

Equation of motion: mÿ + c(ẏ) + k(y) = 0
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⇓

V continues to decrease until y = ẏ = 0
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Convergence analysis

Summary of method:

1. show that V̇ (x)→ 0 as t→∞

2. determine the set R of points x for which V̇ (x) = 0

3. identify the subset M of R for which V̇ (x) = 0 at all future times

then x(t) has to converge to M as t→∞

This approach is the basis of the invariant set theorems
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Barbalat’s Lemma

For any function φ(t), if

(i).

∫ t

0

φ(τ) dτ converges to a finite limit as t→∞

(ii). φ̇(t) exists and remains finite for all t

then limt→∞ φ(t) = 0

? If φ is uniformly continuous, then∫ t

0

φ(τ) dτ → constant =⇒ φ(t)→ 0 as t→∞

? Condition (ii) ensures that φ(t) is uniformly continuous

? Without (ii) we could have

∫ t

0

φ(τ) dτ → constant

and φ(t) 6→ 0

}
as t→∞
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Barbalat’s Lemma

Example: pulse train φ(t) =
∑∞
k=0 e

−4k(t−k)2 :

φ(t) :

∫ t

0

φ(τ) dτ :

0 2 4 6 8 10
0

1

2

3

t

∫ φ
(t

) 
dt

0 2 4 6 8 10
0

0.5

1

1.5

φ(
t)

From the plots it is clear that∫ t

0

φ(s) ds tends to a finite limit

but φ(t) 6→ 0 as t→∞ because φ̇(t)→∞ as t→∞
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Barbalat’s Lemma

Apply Barbalat’s Lemma to V̇
(
x(t)

)
= φ(t) ≤ 0:

(a) Integrate:∫ t

0

φ(s) ds = V
(
x(t)

)
− V

(
x(0)

)
← finite limit as t→∞

(b) Differentiate:

φ̇(t) = V̈
(
x(t)

)
= f(x)>

∂2V

∂x2
(x)f(x) +∇V (x)>

∂f

∂x
(x)f(x)

= finite for all t if f(x) continuous and V (x) continuously differentiable

⇓

V̇ (x)→ 0 as t→∞

(a) and (b) rely on ‖x(t)‖ remaining finite for all t,
which is implied by:

V (x) positive definite

V̇ (x) ≤ 0
V (x)→∞ as ‖x‖ → ∞
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Convergence analysis

Summary of method:

1. show that V̇ (x)→ 0 as t→∞
→ true whenever V̇ ≤ 0 & V, f are smooth & ‖x(t)‖ is bounded

[by Barbalat’s Lemma]

2. determine the set R of points x for which V̇ (x) = 0
→ algebra!

3. identify the subset M of R for which V̇ (x) = 0 at all future times
→ M must be invariant

then x(t) has to converge to M as t→∞

This approach is the basis of the invariant set theorems
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Invariant sets

A set of points M in state space is invariant if

x(t0) ∈M =⇒ x(t) ∈M for all t > t0

Examples:

? Equilibrium points

? Limit cycles

? If V̇ (x) ≤ 0, then sublevel sets of V (x) are invariant
↑

{x : V (x) ≤ α} for constant α

If V̇ (x)→ 0 as t→∞, then

x(t) converges to an invariant setM contained within the set of points

on which V̇ (x) = 0 as t→∞
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Global invariant set theorem

If there exists a continuously differentiable function V (x) such that

V (x) is positive definite

V̇ (x) ≤ 0
V (x)→∞ as ‖x‖ → ∞

then: (i). V̇ (x)→ 0 as t→∞
(ii). x(t)→M = the largest invariant set contained in R

where R = {x : V̇ (x) = 0}

0

M��

R
x(t)

V̇ (x) negative definite =⇒M = 0 (c.f. Lyapunov’s direct method)

Determine M by considering system dynamics within R
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Global invariant set theorem

Revisit m-s-d example

V (x) is positive definite, V (x)→∞ as ‖x‖ → ∞, and

V̇ (y, ẏ) = −c(ẏ)ẏ ≤ 0

therefore V̇ → 0, implying ẏ → 0 as t→∞
i.e. R = {(y, ẏ) : ẏ = 0}

but ẏ = 0 implies ÿ = −k(y)/m

therefore ÿ 6= 0 unless y = 0, so ẏ(t) = 0 for all t only if y(t) = 0
i.e. M = {(y, ẏ) : (y, ẏ) = (0, 0)}

⇓

(y, ẏ) = (0, 0) is a globally asymptotically stable equilibrium!
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Local invariant set theorem

If there exists a continuously differentiable function V (x) such that

the sublevel set Ω = {x : V (x) ≤ α} is bounded for some α

and V̇ (x) ≤ 0 whenever x ∈ Ω

then: (i). Ω is an invariant set

(ii). x(0) ∈ Ω =⇒ V̇ (x)→ 0 as t→∞
(iii). x(t)→M = largest invariant set contained in R∩ Ω

where R = {x : V̇ (x) = 0}

0

M���

R
x(t)

Ω
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Local invariant set theorem

V (x) doesn’t have to be positive definite or radially unbounded

Result is based on Barbalat’s Lemma applied to V̇

↑

applies here because boundedness of Ω implies ‖x(t)‖ finite for all t
since x(0) ∈ Ω and V̇ ≤ 0

Ω is a region of attraction for M
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Example: local invariant set theorem

Second order system: ẋ1 = x2

ẋ2 = −(x1 − 1)2x3
2 − x1 + sin(πx1/2)

Equilibrium points: (x1, x2) = (0, 0), (1, 0), (−1, 0)

Trial storage function:

V (x) = 1
2
x2

2 +

∫ x1

0

(
y − sin(πy/2)

)
dy

V is not positive definite
but V (x)→∞ if x1 →∞ or x2 →∞

⇓

sublevel sets of V are bounded x10 1−1

x1

V (x1, 0)

�
�

x1 − sin(πx1/2)
�
�
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Example: local invariant set theorem

Differentiate: V̇ (x) = −(x1 − 1)2x4
2 ≤ 0

V̇ (x) = 0 ⇐⇒ x ∈ R = {x : x1 = 1 or x2 = 0}

From the system model, x ∈ R implies:

x1 = 1 =⇒ (ẋ1, ẋ2) = (x2, 0)
and

x2 = 0 =⇒ (ẋ1, ẋ2) = (0, sin(πx1/2)− x1)

therefore

{
x(t) remains on line x1 = 1 only if x2 = 0
x(t) remains on line x2 = 0 only if x1 = 0, 1 or −1

=⇒ M = {(0, 0), (1, 0), (−1, 0)}
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Example: local invariant set theorem���������� F��
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Example: local invariant set theorem

Apply the local invariant set theorem to any sublevel set Ω = {x : V (x) ≤ α} containing x(0):

Ω is bounded

V̇ ≤ 0

}
=⇒ x(t)→M = {(0, 0), (1, 0), (−1, 0)} as t→∞

For any given x(0), we can choose sufficiently large α so that Ω = {x : V (x) ≤ α} contains x(0)

so x(t)→M = {(0, 0), (1, 0), (−1, 0)} as t→∞ for all x(0)

Can we find more precise limits for x(t)?
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Example: local invariant set theorem

We have shown x(t) converges asymptotically to (0, 0), (1, 0) or (−1, 0) but:

(a). x = (0, 0) is unstable since the linearization at (0, 0) has poles ±
√

π
2
− 1

(b). V (x) has sublevel sets that contain only (1, 0) or (−1, 0)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2
Contours of V (x)

V (x) = 0���9

apply the local invariant set theorem to Ω = {x : V (x) ≤ α} for α < 0
↓

x = (1, 0), x = (−1, 0) are stable equilibrium points
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Summary

Convergence analysis using Barbalat’s lemma

Invariant sets

Invariant set methods for convergence analysis:

local invariant set theorem

global invariant set theorem
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Lecture 4

Linear systems, passivity, and the circle criterion
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Linear systems, passivity, and the circle criterion

B Summary of stability methods

B Lyapunov functions for linear systems

B Passive linear systems

B The circle criterion
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Summary of stability methods

I Linearization method

ẋ = Ax is strictly stable, A =
∂f

∂x

∣∣∣
x=0

⇓
x = 0 locally asymptotically stable

I Lyapunov’s direct method

V (x) locally p.d.

V̇ (x) ≤ 0 locally
⇓

x = 0 stable

V (x) locally p.d.

V̇ (x) locally n.d.
⇓

x = 0 locally
asymptotically stable

V (x) p.d.

V̇ (x) n.d.
V (x)→∞ as ‖x‖ → ∞

⇓
x = 0 globally
asymptotically stable

I Invariant set theorems

V (x) p.d.

V̇ (x) ≤ 0
V (x)→∞ as ‖x‖ → ∞

Ω = {x : V (x) ≤ V0} bounded

V̇ (x) ≤ 0 for all x ∈ Ω
⇓

x(t) converges to the union of invariant sets contained in {x : V̇ (x) = 0}
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Summary of stability methods

I Instability theorems analogous to Lyapunov’s direct method, e.g.

V (x) p.d.

V̇ (x) p.d.

}
=⇒ x = 0 unstable

I Lyapunov stability criteria are only sufficient, e.g.

V (x) p.d.

V̇ (x) 6≤ 0

}
6=⇒ x = 0 unstable

since some other V (x) demonstrating stability may exist

I Converse theorems

x = 0 stable =⇒ V (x) demonstrating stability exists

since we can swap premises and conclusions in Lyapunov’s direct method

. . . but there is no general method for constructing V (x)
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Linear systems

I For linear systems, consider quadratic storage functions V (x) = x>Px

If ẋ = Ax is strictly stable then ∃P such that: V (x) is positive definite

and V̇ (x) is negative definite

I Only need consider symmetric P

x>Px = 1
2
x>Px+ 1

2
x>P>x = 1

2
x> (P + P>)︸ ︷︷ ︸

SYMMETRIC

x

I Need λ(P ) > 0 for positive definite V (x) = x>Px

P = UΛU> eigenvector/value decomposition
⇓

x>Px = z>Λz z = U>x
⇓

x>Px positive definite
iff Λii > 0

{
notation: P � 0

or “P is a positive definite matrix”
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Linear systems

I A systematic method for computing P

ẋ = Ax

V (x) = x>Px

}
=⇒ V̇ (x) = x>P ẋ+ ẋ>Px

= x>(PA+A>P )x

∴ x = 0 is globally asymptotically stable if, for some Q:

PA+A>P = −Q Q = Q> � 0

Lyapunov matrix equation

I Pick Q � 0 and solve PA+A>P = −Q for P , then

Re
[
λ(A)

]
< 0 ⇐⇒ unique solution for P

and P = P> � 0
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Example: Lyapunov matrix equation

Stable linear system ẋ = Ax:

[
ẋ1

ẋ2

]
=

[
0 −16
1 −2

] [
x1

x2

]
λ(A) = −1± i

√
15

Choose Q and solve PA+A>P = −Q for P :

Q1 =
[

1 0
0 1

]
⇒ P1 =

[
0.33 −0.5
−0.5 4.25

]
, Q2 =

[
0.41 −0.19
−0.19 0.11

]
⇒ P2 =

[
0.12 −0.21
−0.21 1.67

]

−30 −20 −10 0 10 20 30
−8

−6

−4

−2

0

2

4

6

8

x
1

x 2

x>P1x =
constant

@@I

x(t)
@@I

−50 0 50
−15

−10

−5

0

5

10

15

x
1

x 2

x>P2x =
constant

@@R

x(t)
@@I

any choice of Q � 0 gives P � 0 if A is strictly stable

(but not every P � 0 gives Q � 0)
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Passive systems

Systematic method for constructing storage functions

based on the input-output representation of a system:

- system -u y input: u
output: y

The system mapping u to y is:

– Passive if

V̇ = yu− g with V (t) ≥ 0, g(t) ≥ 0

here V is the “storage function”

– Strictly passive∗ if it is passive with∫ t

0

g dt ≥ ε
∫ t

0

u2 dt for all u, for all t > 0, and some ε > 0

(∗some other names for this property: “strictly input passive” or “dissipative with dissipation ε”)
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Passive systems

I Passivity is motivated by electrical networks with no internal power generationa

a

-

6

v

i

input: i
output: v

}
stored energy: V =

∫ t

0

vi dt ≥ 0

V̇ = iv = net power input

I Passive mechanical systems (robotics, automotive, aerospace . . . )

e.g. passive m-s-d system mapping input F to output ẏ:

m

k(y)

c(ẏ) -
y

�F

mẍ+ c(ẋ) + k(x) = F

y k(y) ≥ 0

ẏ c(ẏ) ≥ 0

V =
1

2
mẏ2 +

∫ y

0

k(x) dx =⇒ V̇ = F ẏ − ẏc(ẏ)
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Passive systems

Passivity is closely related to Lyapunov stability:

B Storage function for a passive system:

V̇ ≤ yu

rate of energy increase is less than input power

B Lyapunov function V (x) for a stable system:

V̇ ≤ 0

energy decreases with time

B Note that passivity doesn’t require V (x) to be positive definite in general

4 - 11



Passive systems

Passivity allows storage functions to be determined for feedback systems

(1) Closed-loop system with passive subsystems S1 and S2:

d S1

S2
�

6
-- -

y2

u1 y1

u2

−
+r = 0 y

S1 : V1 ≥ 0 V̇1 = y1u1 − g1

S2 : V2 ≥ 0 V̇2 = y2u2 − g2

V1 + V2 ≥ 0

V̇1 + V̇2 = y1u1 + y2u2 − g1 − g2

= y1(−y2) + y2y1 − g1 − g2

= −g1 − g2

≤ 0

=⇒ V = V1 + V2 is a Lyapunov function for the closed-loop system

if V is a positive definite function of the state of (S1, S2)
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Interconnected passive systems

(2) Parallel connection:

dS1

S2

-

-
6
-?

u2

u1 y1

y2

+

+

yu

V1 + V2 ≥ 0

V̇1 + V̇2 = y1u1 + y2u2 − g1 − g2

= (y1 + y2)u− g1 − g2

= yu− g1 − g2

⇓
Overall system from u to y is passive

(3) Feedback connection:d S1

S2
�

6
-- -

y2

u1 y1

u2

−
+u y V1 + V2 ≥ 0

V̇1 + V̇2 = y1u1 + y2u2 − g1 − g2

= y(u− y2) + y2y − g1 − g2

= yu− g1 − g2

⇓
Overall system from u to y is passive
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Passive linear systems

Transfer function :
Y (s)

U(s)
= H(s) - H(s) -u y

I H is passive if and only if

(i). Re(pi) ≤ 0 for all poles pi of H(s)

(ii). Re
[
H(jω)

]
≥ 0 for all 0 ≤ ω ≤ ∞

? H must be stable, otherwise V (t) =

∫ t

0

yu dt is not defined for all u

? From Parseval’s theorem:

Re
[
H(jω)

]
≥ 0 ⇐⇒

∫ t

0

yu dt ≥ 0 for all u(t) and t

↑
frequency domain condition for passivity

H is called a “positive real” system
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Passive linear systems

Transfer function :
Y (s)

U(s)
= H(s) - H(s) -u y

I H is strictly passsive (also called “strictly positive real”) if Re(pi) < 0 and

Re
[
H(jω)

]
> 0 for all 0 ≤ ω <∞

I Kalman-Yakubovich-Popov (KYP) Lemma implies

If H is strictly passive, then there exist P � 0 and Q � 0 such that

V = x>Px and V̇ = yu− x>Qx

? x is the state of any controllable & observable state space realization of H

? x = 0 is globally asymptotically stable with any passive output feedback law u = −φ(y)
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Linear system + static nonlinearity

d H

φ

6
-

�

−

y

yu

z

H linear:
Y (s)

U(s)
= H(s)

φ static nonlinearity: z = φ(y)

What are the conditions on H and φ for closed-loop stability?

A common problem in practice, due to e.g.

? actuator saturation (valves, dc motors, etc.)
? sensor nonlinearity

Determine closed-loop stability given:

φ belongs to sector [a, b]

m

a ≤ φ(y)

y
≤ b

“Absolute stability problem”

0

z

y

ay

by

φ(y)
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Linear system + static nonlinearity

Aizerman’s conjecture (1949):

Closed-loop system is stable if stable for φ(y) = ky, for all constant k ∈ [a, b]

this is false (it’s necessary but not sufficient)

Sufficient conditions for closed-loop stability:
Popov criterion (1960)
Circle criterion

}
based on passivity

The passivity approach:

(1). If H is strictly passive, then P,Q � 0 exist so that V = x>Px satisfies

V̇ = yu− x>Qx

= −yφ(y)− x>Qx

(2). If φ belongs to sector [0,∞), then: yφ(y) ≥ 0

φ(y)

y

(1) & (2) =⇒ V̇ ≤ −x>Qx
=⇒ x = 0 is globally asymptotically stable
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Circle criterion

Use loop transformations to generalize the approach for

{
H not passive
φ 6∈ [0,∞)

e H

φ

6

-

�

−

y

yu

z

←→
equiv. to

e

e

e

e

eH

a

6
�

- -

1/(b− a)

1/(b− a)

6

φ

a

?

�

� ?

-

�

-

6

�

-
+−

+−

++

++

−
u

z y

y

H′

φ′

φ ∈ [a, b] a, b arbitrary

φ ∈ [a, b] =⇒ φ′ ∈ [0,∞]

H ′(jω) =
H(jω)

1 + aH(jω)
+

1

b− a
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Circle criterion

To make H ′(jω) =
H(jω)

1 + aH(jω)
+

1

b− a strictly passive, need:

(i). H ′ stable ⇐⇒ H(jω)

1 + aH(jω)
stable

m
Nyquist plot of H(jω) goes through ν anti-clockwise encirclements of −1/a

as ω goes from −∞ to ∞ (ν = no. poles of H(jω) in RHP)

(ii). Re
[
H ′(jω)

]
> 0 ⇐⇒

{
H(jω) lies outside D(a, b) if ab > 0
H(jω) lies inside D(a, b) if ab < 0

− 1
a − 1

b

0 Re[H(jω)]

Im[H(jω)]

D(a, b)
@@R
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Graphical interpretation of circle criterion

x = 0 is globally asymptotically stable if:

I 0 < a < b and

H(jω) lies in shaded region and does ν
anti-clockwise encirclements of D(a, b)

− 1
a − 1

b
0

Re

Im

I b > a = 0 and

H(jω) lies in shaded region and ν = 0
(can’t encircle −1/a)

− 1
b

0
Re

Im

I a < 0 < b and

H(jω) lies in shaded region and ν = 0
(can’t encircle −1/a)

− 1
b − 1

a
0

Re

Im

I a < b < 0 and

−H(jω) lies in shaded region and does ν
anti-clockwise encirclements of D(−b,−a)

1
b

1
a

0
Re

Im
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Circle criterion

B Circle criterion is equivalent to Nyquist criterion for a = b > 0

↑

D(a, b) = −1

a
(single point)

B Circle criterion is only sufficient for closed-loop stability for general a, b

B Results apply to time-varying static nonlinearity: φ(y, t)
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Example: Active suspension system

B Active suspension system for high-speed train:

carriage body

Q�

ck

xa

x hydraulic
actuator

wheel

Q = φ(u)
ẋa = Q/A

u : valve input signal
Q : flow rate
φ : valve characteristics, φ ∈ [0.005, 0.1]
A : actuator working area

B Force exerted by suspension system on carriage body: Fsusp

Fsusp = k(xa − x) + c(ẋa − ẋ)

=
(
k

∫ t

Q dt+ cQ
)
/A− kx− cẋ, Q = φ(u)

B Design controller to compensate for the effects of (constant) unknown load on displacement x
despite uncertain valve characteristics φ(u).
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Active suspension system contd.

B Dynamics:

Fsusp − F = mẍ

=⇒ mẍ+ cẋ+ kx =
(
k

∫ t

Qdt+ cQ
)
/A− F, Q = φ(u)

F : unknown load on suspension unit
m : effective carriage mass

B Transfer function model:

X(s) =
cs+ k

ms2 + cs+ k
· Q(s)

As
− F

ms2 + cs+ k
Q = φ(u)

B Try linear compensator C(s):

U(s) = C(s)E(s) e = −x, setpoint: x = 0

-0 + e -e C(s) -u φ(·) -Q cs+ k

As
- e?+ −

F

- 1

ms2 + cs+ k
-x

6−
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Active suspension system contd.

B For constant F , we need to stabilize the closed-loop system:e - cs+ k

As
- 1

ms2 + cs+ k
-−x C(s)

u

�φ(·)
Q

6−

linear system: H(s) =
cs+ k

As(ms2 + cs+ k)
· C(s)

static nonlinearity: φ ∈ [0.005, 0.1]

B P+D compensator (no integral term needed):

C(s) = K(1 + αs) =⇒ H(s) =
K(1 + αs)(cs+ k)

As(ms2 + cs+ k)

H open-loop stable (ν = 0)

B From the circle criterion, closed-loop (global asymptotic) stability is ensured if:
H(jω) lies outside D(0.005, 0.1)

↑
sufficient condition: Re

[
H(jω)

]
> −10
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Active suspension system contd.

B Nyquist plot of H(jω) for K = 1 and α = 0, 0.2, 0.4, 0.8:

−10 −8 −6 −4 −2 0 2 4 6 8 10
−40

−35

−30

−25

−20

−15

−10

−5

0

5
α = 0

α = 0.2

α = 0.4

α = 0.8

Re
[
H(jω)

]

Im
[
H(jω)

]

B To maximize gain margin:

choose α = 0.2
K ≤ 10/3.4 = 2.94

← allows for largest K
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Summary

At the end of the course you should be able to do the following:

I Understand the basic Lyapunov stability definitions (lecture 1)

I Analyse stability using the linearization method (lecture 2)

I Analyse stability by Lyapunov’s direct method (lecture 2)

I Determine convergence using Barbalat’s Lemma (lecture 3)

I Understand how invariant sets can determine regions of attraction
(lecture 3)

I Construct Lyapunov functions for linear systems and passive systems
(lecture 4)

I Use the circle criterion to design controllers for systems with static nonlinearities (lecture 4)
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