
1

Nonlinear Systems Examples Sheet: Solutions

Mark Cannon, Hilary Term 2023

Equilibrium points

1. (a). Solving ẋ = sin4 x − x3 = 0 for x gives x = 0 as an equilibrium

point. This is the only equilibrium because there is only one point

(x = 0) where sinx = x since

| sinx| < |x| < 1 =⇒ | sinx|4 < |x|3 for all |x| ≤ 1, x 6= 0

| sinx| ≤ 1 =⇒ | sinx|4 < |x|3 for all |x| > 1
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Figure 1: solution of x3 = sin4 x for question 1

(b). In terms of state variables (x1, x2) = (x, ẋ):

ẋ1 = ẋ = x2

ẋ2 = ẍ = −(x1 − 1)2x52 − x21 + sin(πx1/2)

At an equilibrium point ẋ1 = ẋ2 = 0. But ẋ1 = 0 implies x2 = 0, so

ẋ2 = 0 =⇒ x21 − sin(πx1/2) = 0 =⇒ x1 = 0 or 1

Therefore equilibrium points are (x1, x2) = (x, ẋ) = (0, 0) and (1, 0).
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Lyapunov’s direct method, invariant sets and linearization

2. To explain the significance of constants a, b, c, we first give a derivation

of the dynamics (this is not asked for in the question). The angular

momentum of the craft in xyz-coordinates (Fig. 2) is given by

H = Iω, I =

Ix 0 0

0 Iy 0

0 0 Iz

 , ω =

ωx

ωy

ωz


where Ix, Iy, Iz are the moments of inertia about x, y, and z-axes (as-

sumed to be aligned with the spacecraft’s principal axes). Since there is

no torque acting on the craft:

d

dt
(Iω) = Iω̇ + ω × Iω = 0

(where the ω × Iω term is needed because xyz-coordinates are fixed to

and hence rotate with the spacecraft). So the full dynamics are given by

ω̇x = aωyωz ω̇y = −bωxωz ω̇z = cωxωy

a = (Iy − Iz)/Ix, b = (Ix − Iz)/Iy, c = (Ix − Iy)/Iz

and the constants a, b, c are all positive if Ix > Iy > Iz.

yωy

z

ωzx

ωx

Figure 2: Rotating spacecraft.

(a). Equilibrium points: ω̇x = 0 ⇐⇒ ωy = 0 or ωz = 0, i.e. at least two

of ωx, ωy and ωz must be zero for ω̇x = ω̇y = ω̇z = 0. Therefore
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every point in state space lying on the ωx-axis, the ωy-axis, or the

ωz-axis is an equilibrium point.

(b). To show stability of the equilibrium at ω = 0, try V = pω2
x+qω2

y+rω
2
z

as a Lyapunov function. Clearly V is positive definite if p, q, r are all

positive. Also

V̇ = 2(pωxω̇x + qωyω̇y + rωzω̇z)

= 2(pa− qb+ rc)ωxωyωz

Hence choosing p, q, r so that

p > 0, q > 0, r > 0, and pa− qb+ rc = 0,

(which is always possible since q = (pa + rc)/b is positive for any

chosen positive p, r), results in V̇ = 0, implying that ω = 0 is a

stable equilibrium point by Lyapunov’s direct method.

(c). Differentiating the function

V = cω2
y + bω2

z +
[
2acω2

y + abω2
z + bc(ω2

x − ω2
0)
]2

(for constant ω0) with respect to t along system trajectories yields

V̇ = 2cωyω̇y + 2bωzω̇z︸ ︷︷ ︸
=0

+ 2
[
2acω2

y + abω2
z + bc(ω2

x − ω2
0)
]

(4acωyω̇y + 2abωzω̇z + 2bcωxω̇x)︸ ︷︷ ︸
=0

i.e. V̇ = 0. Also V = 0 only if ω = (±ω0, 0, 0), and V > 0 whenever

ωx 6= ±ω0, ωy 6= 0 or ωz 6= 0, so that V is a locally positive definite

function centered at the equilibrium (±ω0, 0, 0). Therefore V̇ = 0

implies that every point on the ωx-axis in state space is a stable

equilibrium, and hence that rotation at any constant velocity about

the x-axis alone is stable.

[Note that rotational motion about the z-axis is likewise stable since

a, c and ωx, ωz can be swapped in the dynamics and in the definition

of V . However rotation about the y-axis is unstable, as shown by the
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linearized system at ω = (0, ω0, 0):ω̇x

ω̇y

ω̇z

 ≈
 0 0 aω0

0 0 0

cω0 0 0


ωx

ωy

ωz


which has eigenvalues ±

√
acω0 and 0, and is therefore unstable.]

3. (a). The positive definite function V = 1
2x

2 has derivative:

V̇ = xẋ = −xb(x)

which is negative definite due to xb(x) > 0 whenever x 6= 0. There-

fore x = 0 is asymptotically stable, and since V → ∞ as x → ∞
it follows that x = 0 is globally asymptotically stable by Lyapunov’s

direct method.

(b). At an equilibrium point ẋ = 0. Hence ẍ = −c(x) = 0 implies x = 0

since the condition xc(x) > 0 whenever x 6= 0 implies that c(x) can

only be equal to zero if x = 0. Therefore the only equilibrium point

is the origin of state space: (x, ẋ) = (0, 0).

The function V (x, ẋ) is positive definite and has derivative

V̇ = ẋẍ+ c(x)ẋ = −ẋb(ẋ) ≤ 0

and hence (x, ẋ) = (0, 0) is stable by Lyapunov’s direct method.

To apply the local invariant set theorem, we need to show that:

(i) the level sets {(x, ẋ) : V (x, ẋ) ≤ V0} are bounded for some

V0; (ii) V̇ ≤ 0; (iii) the system dynamics are continuous and V is

continuously differentiable in x and ẋ. Here (i) is satisfied because

V is increasing in both x (since sign(c(x)) = sign(x)) and ẋ; (ii) is

demonstrated above; and (iii) holds since b(ẋ), c(x), ∂V/∂ẋ = ẋ,

and ∂V/∂x = c(x) are all continuous functions of x and ẋ. Let

R = {(x, ẋ) : V̇ = 0} and let M be the largest invariant set

contained in R, then

R = {(x, ẋ) : ẋ = 0}
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and since ẍ = 0 is necessary in order that the state remains in R, we

have

M = R∩ {(x, ẋ) : ẍ = 0} = {(x, ẋ) : c(x) = 0} = {(0, 0)}.

From the local invariant set theorem, (x, ẋ) therefore converges asymp-

totically to R from all initial conditions within any bounded level set

of V , implying that (0, 0) is asymptotically stable.

To show global asymptotic stability we need V to be radially un-

bounded (in order to apply the global invariant set theorem) or

equivalently the level sets of V must cover the entire state space

as V0 →∞. This condition requires∫ x

c(s) ds→∞ as x→∞.

4. (a). The equilibrium points can be found by solving ẋ1 = ẋ2 = 0 for x1

and x2:

ẋ1 = 0 =⇒ x2 = 0

ẋ1 = ẋ2 = 0 =⇒ x1(x
2
1 − 1) = 0 =⇒ x1 = 0, 1,−1.

Hence the equilibrium points are (x1, x2) = {(0, 0), (1, 0), (−1, 0)}.

(b). The system and function V have the following properties.

(i). V , ẋ1 and ẋ2 are continuous functions of x1 and x2.

(ii). The level sets: {(x1, x2) : V ≤ V0} are finite and V is radially

unbounded since V →∞ as |x1| → ∞ and/or |x2| → ∞.

(iii). Along system trajectories, V has derivative

V̇ (x1, x2) = x2ẋ2 + x1(x
2
1 − 1)ẋ1

= −x22(x1 − 1)2 − x1x2(x21 − 1) + x1x2(x
2
1 − 1)

= −x22(x1 − 1)2

≤ 0.



6

Using the global invariant set theorem, (i)-(iii) imply that every state

trajectory tends to an invariant set on which V̇ = 0. (The same

conclusion can be reached using the local invariant set theorem, since

the level sets of V can be made arbitrarily large by choosing V0

sufficiently large.)

From (iii), V̇ (x1, x2) = 0 is satisfied on the lines x2 = 0 and x1 = 1.

The invariant sets within these lines are defined by ẋ2 = 0 (on x2 = 0)

and ẋ1 = 0 (on x1 = 1). But

x2 = 0

ẋ2 = 0

}
=⇒ x1 = 0, 1,−1,

x1 = 1

ẋ1 = 0

}
=⇒ x2 = 0

and every state trajectory therefore tends asymptotically to one of

the three equilibrium points identified in (a).

(c). Writing the system dynamics in the form ẋ = f(x), x =
[
x1 x2

]T
where the Jacobian matrix of f is

∂f

∂x
(x) =

[
0 1

−2x2(x1 − 1)− (3x21 − 1) −(x1 − 1)2

]
,

the linearization of the system at x1 = x2 = 0 is given by

ẋ = Ax, A =
∂f

∂x
(0) =

[
0 1

1 −1

]
.

A has eigenvalues −1/2±
√

5/2, and it follows that the origin is an

unstable equilibrium of the nonlinear system, by Lyapunov’s lineariza-

tion method.

(d). V has local minimum points at (x1, x2) = (−1, 0) and (1, 0) (since

∇V =

[
x31 − x1
x2

]
= 0

∂2V

∂x2
=

[
3x21 − 1 0

0 1

]
=

[
2 0

0 1

]
> 0

at (x1, x2) = (−1, 0) and (1, 0)). Hence V + 1
4 is locally positive

definite at (x1, x2) = (−1, 0) and (1, 0), and from Lyapunov’s direct

method these equilibrium points are therefore stable because V̇ ≤ 0.
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Other approaches for (d): The equilibrium at (−1, 0) can be shown to

be stable using the linearization method, since the linearization at this

point is stable. However the linearization about (1, 0) has eigenvalues

±i
√

2, and therefore does not allow any conclusions to be made about

the stability of this equilibrium for the nonlinear system.

5. (a). Using matrices A,B,K and the given matrix P we get (2 marks):

Q = −(A−BK)TP − P (A−BK) =

[
2 1

1 2

]

where

eig(P ) = λ : λ2 − 3λ+ 1= 0 =⇒ λ = 3
2 ±

√
5
2

eig(Q) = λ : λ2 − 4λ+ 3= 0 =⇒ λ = 1, 3

The equilibrium x = 0 is locally asymptotically stable since:

• the linearized closed loop system about x = 0 is ẋ = (A−BK)x

• (A − BK)TP + P (A − BK) = −Q for positive definite P,Q

implies ẋ = (A−BK)x is stable, i.e. Re[eig(A−BK)] < 0

• so the nonlinear closed loop system is locally a.s.

(b). From V = xTPx and ẋ = (A−BK)x− x(Kx) we get

V̇ = xT
[
(A−BK)TP + P (A−BK)

]
x− (Kx)xT (P + P )x

= −xTQx− 2(Kx)xTPx

≤ −xTQx+ 2|Kx|xTPx

But xTPx− xTQx = xT (P −Q)x = −x22 ≤ 0,

so V̇ ≤ −xTQx+ 2|Kx|xTQx.

(c). V̇ ≤ −xTQx(1 − 2|Kx|), so V̇ is negative definite in the region

where |Kx| < 1
2 , which is the strip between the dashed lines in the

figure below.



8

−0.5 0 0.5
−1

−0.5

0

0.5

1

x
1

x 2
Any level set of V contained entirely within

this strip is invariant and hence is a region
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The level sets Ω are ellipsoidal, centred on

the origin, and decrease in size as α is re-

duced. Hence Ω must be invariant for small

enough α.

Linear and passive systems

6. Let Φ = A+ µI, then ATP + PA+ 2µP = −Q implies

ΦTP + PΦ = ATP + PA+ 2µP = −Q,

so P,Q > 0 imply that Re{eig(Φ)} < 0, so that Re{eig(A + µI)} < 0,

and therefore Re{eig(A)} < −µ
(since A = V ΛV −1 =⇒ Φ = V (Λ− µI)V −1).

7. (a). Differentiating V1 with respect to t gives:

V̇1 =
x2e

L(x2)
− R1

L2(x2)
x22 = ẋ1e−

R1

L2(x2)
x22

and since V ≥ 0, this implies that the dynamic system with e as

input and ẋ1 as output is passive (in fact it is dissipative).

(b). Let x3 and x4 be respectively the charge on the capacitor and flux

in the inductor in the right-hand branch of the circuit, and define

V2(x3, x4) =

∫ x4

0

x

L(x)
dx +

∫ x3

0

x

C(x)
dx.

Differentiating w.r.t. t gives V̇2 = ẋ3e − R2x
2
4/L

2(x4). Therefore,

defining V = V1 + V2 and using the fact that ẋ1 + ẋ3 = i (since the
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currents in the two branches of the circuit must sum to i), we get

V =

∫ x2

0

x

L(x)
dx+

∫ x4

0

x

L(x)
dx+

∫ x1

0

x

C(x)
dx+

∫ x3

0

x

C(x)
dx

V̇ = ie− R1

L2(x2)
x22 −

R2

L2(x4)
x24.

and V ≥ 0 since V1, V2 ≥ 0.

Opening the switch forces i = 0, so

V̇ = − R1

L2(x2)
x22 −

R2

L2(x4)
x24

and since the level sets {(x1, x2, x3, x4) : V ≤ V̄ } are bounded (when

V̄ is sufficiently small), it follows from the local invariant set theorem

that the system is (locally) asymptotically stable.

Specifically, x = (x1, x2, x3, x4) must converge to the largest invari-

ant set within the set of states such that V̇ = 0, i.e. x2 = x4 = 0

(so the currents ẋ1 and ẋ3 must converge to zero) and ẋ2 = ẋ4 = 0,

implying that x converges asymptotically to a steady state such that

x1/C(x1) = x3/C(x3) and (x2, x4) = (0, 0). This asymptotic stabil-

ity property is global if V1 and V2 are radially unbounded. Note that

the equilibrium points to which the system can converge lie on a 2-

dimensional surface in state space (defined by x1/C(x1) = x3/C(x3))

and also that the same analysis can be applied to any number of LCR

branches connected in parallel.

8. (a). The rectangular region containing G(jω) lies within D(a, b) if a =

−1
3 and b = 1

2 , since D(a, b) is then just touching its corners (Fig. 3).

The open-loop system is stable, and the circle criterion therefore im-

plies that the closed-loop system with u = −φ(y) will be asymptoti-

cally stable if φ lies in the sector [−1
3 ,

1
2 ].

Clearly this is not the only sector bound for φ for which the closed-

loop system is guaranteed to be stable by the circle criterion. In

fact a family of discs D(a, b) containing G(jω) is generated as a is
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increased from −1/3, and to allow for the largest possible value of b

we need to set a = 0 and b = −1, corresponding to sector bounds

φ ∈ [0, 1].

(b). Closed-loop stability does not apply to nonlinearities φ bounded by

the union of the two sectors defined in part (a), i.e. [−1
3 , 1], since this

includes nonlinearities not belonging to either of the sectors [−1
3 ,

1
2 ]

and [0, 1]. In particular, the disc centred on the real axis and inter-

secting the real axis at −1 and 3 does not entirely contain the box

in which G(jω) is known to lie, so it cannot be concluded from the

circle criterion that the closed loop system will be stable.

Re{G(jω)}

Im{G(jω)}

0

2

−2

−1−1

b
−1

a
2

D(a, b)
��	

Figure 3: Bounds on the Nyquist plot of G(jω).


