Nonlinear Systems Examples Sheet: Solutions

Mark Cannon, Hilary Term 2023

Equilibrium points

1. (a). Solving $\dot{x}=\sin ^{4} x-x^{3}=0$ for x gives $x=0$ as an equilibrium point. This is the only equilibrium because there is only one point $(x=0)$ where $\sin x=x$ since

$$
\begin{aligned}
|\sin x|<|x|<1 & \Longrightarrow|\sin x|^{4}<|x|^{3} \text { for all }|x| \leq 1, x \neq 0 \\
|\sin x| \leq 1 & \Longrightarrow|\sin x|^{4}<|x|^{3} \text { for all }|x|>1
\end{aligned}
$$

Figure 1: solution of $x^{3}=\sin ^{4} x$ for question 1
(b). In terms of state variables $\left(x_{1}, x_{2}\right)=(x, \dot{x})$:

$$
\begin{aligned}
& \dot{x}_{1}=\dot{x}=x_{2} \\
& \dot{x}_{2}=\ddot{x}=-\left(x_{1}-1\right)^{2} x_{2}^{5}-x_{1}^{2}+\sin \left(\pi x_{1} / 2\right)
\end{aligned}
$$

At an equilibrium point $\dot{x}_{1}=\dot{x}_{2}=0$. But $\dot{x}_{1}=0$ implies $x_{2}=0$, so

$$
\dot{x}_{2}=0 \quad \Longrightarrow \quad x_{1}^{2}-\sin \left(\pi x_{1} / 2\right)=0 \quad \Longrightarrow \quad x_{1}=0 \text { or } 1
$$

Therefore equilibrium points are $\left(x_{1}, x_{2}\right)=(x, \dot{x})=(0,0)$ and $(1,0)$.

Lyapunov's direct method, invariant sets and linearization

2. To explain the significance of constants a, b, c, we first give a derivation of the dynamics (this is not asked for in the question). The angular momentum of the craft in $x y z$-coordinates (Fig. 2) is given by

$$
H=I \omega, \quad I=\left[\begin{array}{ccc}
I_{x} & 0 & 0 \\
0 & I_{y} & 0 \\
0 & 0 & I_{z}
\end{array}\right], \quad \omega=\left[\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
$$

where I_{x}, I_{y}, I_{z} are the moments of inertia about x, y, and z-axes (assumed to be aligned with the spacecraft's principal axes). Since there is no torque acting on the craft:

$$
\frac{d}{d t}(I \omega)=I \dot{\omega}+\omega \times I \omega=0
$$

(where the $\omega \times I \omega$ term is needed because $x y z$-coordinates are fixed to and hence rotate with the spacecraft). So the full dynamics are given by

$$
\begin{aligned}
& \dot{\omega}_{x}=a \omega_{y} \omega_{z} \quad \dot{\omega}_{y}=-b \omega_{x} \omega_{z} \quad \dot{\omega}_{z}=c \omega_{x} \omega_{y} \\
& a=\left(I_{y}-I_{z}\right) / I_{x}, \quad b=\left(I_{x}-I_{z}\right) / I_{y}, \quad c=\left(I_{x}-I_{y}\right) / I_{z}
\end{aligned}
$$

and the constants a, b, c are all positive if $I_{x}>I_{y}>I_{z}$.

Figure 2: Rotating spacecraft.
(a). Equilibrium points: $\dot{\omega}_{x}=0 \Longleftrightarrow \omega_{y}=0$ or $\omega_{z}=0$, i.e. at least two of ω_{x}, ω_{y} and ω_{z} must be zero for $\dot{\omega}_{x}=\dot{\omega}_{y}=\dot{\omega}_{z}=0$. Therefore
every point in state space lying on the ω_{x}-axis, the ω_{y}-axis, or the ω_{z}-axis is an equilibrium point.
(b). To show stability of the equilibrium at $\omega=0$, try $V=p \omega_{x}^{2}+q \omega_{y}^{2}+r \omega_{z}^{2}$ as a Lyapunov function. Clearly V is positive definite if p, q, r are all positive. Also

$$
\begin{aligned}
\dot{V} & =2\left(p \omega_{x} \dot{\omega}_{x}+q \omega_{y} \omega_{y}+r \omega_{z} \dot{\omega}_{z}\right) \\
& =2(p a-q b+r c) \omega_{x} \omega_{y} \omega_{z}
\end{aligned}
$$

Hence choosing p, q, r so that

$$
p>0, q>0, r>0, \text { and } p a-q b+r c=0,
$$

(which is always possible since $q=(p a+r c) / b$ is positive for any chosen positive p, r), results in $\dot{V}=0$, implying that $\omega=0$ is a stable equilibrium point by Lyapunov's direct method.
(c). Differentiating the function

$$
V=c \omega_{y}^{2}+b \omega_{z}^{2}+\left[2 a c \omega_{y}^{2}+a b \omega_{z}^{2}+b c\left(\omega_{x}^{2}-\omega_{0}^{2}\right)\right]^{2}
$$

(for constant ω_{0}) with respect to t along system trajectories yields

$$
\begin{aligned}
\dot{V}= & \underbrace{2 c \omega_{y} \dot{\omega}_{y}+2 b \omega_{z} \dot{\omega}_{z}}_{=0} \\
& +2\left[2 a c \omega_{y}^{2}+a b \omega_{z}^{2}+b c\left(\omega_{x}^{2}-\omega_{0}^{2}\right)\right] \underbrace{\left(4 a c \omega_{y} \dot{\omega}_{y}+2 a b \omega_{z} \dot{\omega}_{z}+2 b c \omega_{x} \dot{\omega}_{x}\right)}_{=0}
\end{aligned}
$$

i.e. $\dot{V}=0$. Also $V=0$ only if $\omega=\left(\pm \omega_{0}, 0,0\right)$, and $V>0$ whenever $\omega_{x} \neq \pm \omega_{0}, \omega_{y} \neq 0$ or $\omega_{z} \neq 0$, so that V is a locally positive definite function centered at the equilibrium $\left(\pm \omega_{0}, 0,0\right)$. Therefore $\dot{V}=0$ implies that every point on the ω_{x}-axis in state space is a stable equilibrium, and hence that rotation at any constant velocity about the x-axis alone is stable.
[Note that rotational motion about the z-axis is likewise stable since a, c and ω_{x}, ω_{z} can be swapped in the dynamics and in the definition of V. However rotation about the y-axis is unstable, as shown by the
linearized system at $\omega=\left(0, \omega_{0}, 0\right)$:

$$
\left[\begin{array}{c}
\dot{\omega}_{x} \\
\dot{\omega}_{y} \\
\dot{\omega}_{z}
\end{array}\right] \approx\left[\begin{array}{ccc}
0 & 0 & a \omega_{0} \\
0 & 0 & 0 \\
c \omega_{0} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
$$

which has eigenvalues $\pm \sqrt{a c} \omega_{0}$ and 0 , and is therefore unstable.]
3. (a). The positive definite function $V=\frac{1}{2} x^{2}$ has derivative:

$$
\dot{V}=x \dot{x}=-x b(x)
$$

which is negative definite due to $x b(x)>0$ whenever $x \neq 0$. Therefore $x=0$ is asymptotically stable, and since $V \rightarrow \infty$ as $x \rightarrow \infty$ it follows that $x=0$ is globally asymptotically stable by Lyapunov's direct method.
(b). At an equilibrium point $\dot{x}=0$. Hence $\ddot{x}=-c(x)=0$ implies $x=0$ since the condition $x c(x)>0$ whenever $x \neq 0$ implies that $c(x)$ can only be equal to zero if $x=0$. Therefore the only equilibrium point is the origin of state space: $(x, \dot{x})=(0,0)$.

The function $V(x, \dot{x})$ is positive definite and has derivative

$$
\dot{V}=\dot{x} \ddot{x}+c(x) \dot{x}=-\dot{x} b(\dot{x}) \leq 0
$$

and hence $(x, \dot{x})=(0,0)$ is stable by Lyapunov's direct method.
To apply the local invariant set theorem, we need to show that: (i) the level sets $\left\{(x, \dot{x}): V(x, \dot{x}) \leq V_{0}\right\}$ are bounded for some V_{0}; (ii) $\dot{V} \leq 0$; (iii) the system dynamics are continuous and V is continuously differentiable in x and \dot{x}. Here (i) is satisfied because V is increasing in both x (since $\operatorname{sign}(c(x))=\operatorname{sign}(x)$) and \dot{x}; (ii) is demonstrated above; and (iii) holds since $b(\dot{x}), c(x), \partial V / \partial \dot{x}=\dot{x}$, and $\partial V / \partial x=c(x)$ are all continuous functions of x and \dot{x}. Let $\mathcal{R}=\{(x, \dot{x}): \dot{V}=0\}$ and let \mathcal{M} be the largest invariant set contained in \mathcal{R}, then

$$
\mathcal{R}=\{(x, \dot{x}): \dot{x}=0\}
$$

and since $\ddot{x}=0$ is necessary in order that the state remains in \mathcal{R}, we have

$$
\mathcal{M}=\mathcal{R} \cap\{(x, \dot{x}): \ddot{x}=0\}=\{(x, \dot{x}): c(x)=0\}=\{(0,0)\}
$$

From the local invariant set theorem, (x, \dot{x}) therefore converges asymptotically to \mathcal{R} from all initial conditions within any bounded level set of V, implying that $(0,0)$ is asymptotically stable.

To show global asymptotic stability we need V to be radially unbounded (in order to apply the global invariant set theorem) or equivalently the level sets of V must cover the entire state space as $V_{0} \rightarrow \infty$. This condition requires

$$
\int^{x} c(s) d s \rightarrow \infty \text { as } x \rightarrow \infty
$$

4. (a). The equilibrium points can be found by solving $\dot{x}_{1}=\dot{x}_{2}=0$ for x_{1} and x_{2} :

$$
\begin{aligned}
\dot{x}_{1}=0 & \Longrightarrow \quad x_{2}=0 \\
\dot{x}_{1}=\dot{x}_{2}=0 & \Longrightarrow \quad x_{1}\left(x_{1}^{2}-1\right)=0 \quad \Longrightarrow \quad x_{1}=0,1,-1
\end{aligned}
$$

Hence the equilibrium points are $\left(x_{1}, x_{2}\right)=\{(0,0),(1,0),(-1,0)\}$.
(b). The system and function V have the following properties.
(i). V, \dot{x}_{1} and \dot{x}_{2} are continuous functions of x_{1} and x_{2}.
(ii). The level sets: $\left\{\left(x_{1}, x_{2}\right): V \leq V_{0}\right\}$ are finite and V is radially unbounded since $V \rightarrow \infty$ as $\left|x_{1}\right| \rightarrow \infty$ and/or $\left|x_{2}\right| \rightarrow \infty$.
(iii). Along system trajectories, V has derivative

$$
\begin{aligned}
\dot{V}\left(x_{1}, x_{2}\right) & =x_{2} \dot{x}_{2}+x_{1}\left(x_{1}^{2}-1\right) \dot{x}_{1} \\
& =-x_{2}^{2}\left(x_{1}-1\right)^{2}-x_{1} x_{2}\left(x_{1}^{2}-1\right)+x_{1} x_{2}\left(x_{1}^{2}-1\right) \\
& =-x_{2}^{2}\left(x_{1}-1\right)^{2} \\
& \leq 0
\end{aligned}
$$

Using the global invariant set theorem, (i)-(iii) imply that every state trajectory tends to an invariant set on which $\dot{V}=0$. (The same conclusion can be reached using the local invariant set theorem, since the level sets of V can be made arbitrarily large by choosing V_{0} sufficiently large.)

From (iii), $\dot{V}\left(x_{1}, x_{2}\right)=0$ is satisfied on the lines $x_{2}=0$ and $x_{1}=1$. The invariant sets within these lines are defined by $\dot{x}_{2}=0$ (on $x_{2}=0$) and $\dot{x}_{1}=0$ (on $x_{1}=1$). But

$$
\left.\left.\begin{array}{l}
x_{2}=0 \\
\dot{x}_{2}=0
\end{array}\right\} \quad \Longrightarrow \quad x_{1}=0,1,-1, \quad \begin{array}{l}
x_{1}=1 \\
\dot{x}_{1}=0
\end{array}\right\} \quad \Longrightarrow \quad x_{2}=0
$$

and every state trajectory therefore tends asymptotically to one of the three equilibrium points identified in (a).
(c). Writing the system dynamics in the form $\dot{x}=f(x), x=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}$ where the Jacobian matrix of f is

$$
\frac{\partial f}{\partial x}(x)=\left[\begin{array}{cc}
0 & 1 \\
-2 x_{2}\left(x_{1}-1\right)-\left(3 x_{1}^{2}-1\right) & -\left(x_{1}-1\right)^{2}
\end{array}\right]
$$

the linearization of the system at $x_{1}=x_{2}=0$ is given by

$$
\dot{x}=A x, \quad A=\frac{\partial f}{\partial x}(0)=\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]
$$

A has eigenvalues $-1 / 2 \pm \sqrt{5} / 2$, and it follows that the origin is an unstable equilibrium of the nonlinear system, by Lyapunov's linearization method.
(d). V has local minimum points at $\left(x_{1}, x_{2}\right)=(-1,0)$ and $(1,0)$ (since

$$
\nabla V=\left[\begin{array}{c}
x_{1}^{3}-x_{1} \\
x_{2}
\end{array}\right]=0 \quad \frac{\partial^{2} V}{\partial x^{2}}=\left[\begin{array}{cc}
3 x_{1}^{2}-1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]>0
$$

at $\left(x_{1}, x_{2}\right)=(-1,0)$ and $\left.(1,0)\right)$. Hence $V+\frac{1}{4}$ is locally positive definite at $\left(x_{1}, x_{2}\right)=(-1,0)$ and $(1,0)$, and from Lyapunov's direct method these equilibrium points are therefore stable because $\dot{V} \leq 0$.

Other approaches for (d): The equilibrium at $(-1,0)$ can be shown to be stable using the linearization method, since the linearization at this point is stable. However the linearization about $(1,0)$ has eigenvalues $\pm i \sqrt{2}$, and therefore does not allow any conclusions to be made about the stability of this equilibrium for the nonlinear system.
5. (a). Using matrices A, B, K and the given matrix P we get (2 marks):

$$
Q=-(A-B K)^{T} P-P(A-B K)=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

where

$$
\begin{aligned}
& \operatorname{eig}(P)=\lambda: \lambda^{2}-3 \lambda+1=0 \quad \Longrightarrow \quad \lambda=\frac{3}{2} \pm \frac{\sqrt{5}}{2} \\
& \operatorname{eig}(Q)=\lambda: \lambda^{2}-4 \lambda+3=0 \quad \Longrightarrow \lambda=1,3
\end{aligned}
$$

The equilibrium $x=0$ is locally asymptotically stable since:

- the linearized closed loop system about $x=0$ is $\dot{x}=(A-B K) x$
- $(A-B K)^{T} P+P(A-B K)=-Q$ for positive definite P, Q implies $\dot{x}=(A-B K) x$ is stable, i.e. $\operatorname{Re}[\operatorname{eig}(A-B K)]<0$
- so the nonlinear closed loop system is locally a.s.
(b). From $V=x^{T} P x$ and $\dot{x}=(A-B K) x-x(K x)$ we get

$$
\begin{aligned}
\dot{V} & =x^{T}\left[(A-B K)^{T} P+P(A-B K)\right] x-(K x) x^{T}(P+P) x \\
& =-x^{T} Q x-2(K x) x^{T} P x \\
& \leq-x^{T} Q x+2|K x| x^{T} P x
\end{aligned}
$$

But $x^{T} P x-x^{T} Q x=x^{T}(P-Q) x=-x_{2}^{2} \leq 0$, so $\dot{V} \leq-x^{T} Q x+2|K x| x^{T} Q x$.
(c). $\dot{V} \leq-x^{T} Q x(1-2|K x|)$, so \dot{V} is negative definite in the region where $|K x|<\frac{1}{2}$, which is the strip between the dashed lines in the figure below.

Any level set of V contained entirely within this strip is invariant and hence is a region of attraction for $x=0$.

The level sets Ω are ellipsoidal, centred on the origin, and decrease in size as α is reduced. Hence Ω must be invariant for small enough α.

Linear and passive systems

6. Let $\Phi=A+\mu I$, then $A^{T} P+P A+2 \mu P=-Q$ implies

$$
\Phi^{T} P+P \Phi=A^{T} P+P A+2 \mu P=-Q,
$$

so $P, Q>0$ imply that $\operatorname{Re}\{\operatorname{eig}(\Phi)\}<0$, so that $\operatorname{Re}\{\operatorname{eig}(A+\mu I)\}<0$, and therefore $\operatorname{Re}\{\operatorname{eig}(A)\}<-\mu$
(since $A=V \Lambda V^{-1} \Longrightarrow \Phi=V(\Lambda-\mu I) V^{-1}$).
7. (a). Differentiating V_{1} with respect to t gives:

$$
\dot{V}_{1}=\frac{x_{2} e}{L\left(x_{2}\right)}-\frac{R_{1}}{L^{2}\left(x_{2}\right)} x_{2}^{2}=\dot{x}_{1} e-\frac{R_{1}}{L^{2}\left(x_{2}\right)} x_{2}^{2}
$$

and since $V \geq 0$, this implies that the dynamic system with e as input and \dot{x}_{1} as output is passive (in fact it is dissipative).
(b). Let x_{3} and x_{4} be respectively the charge on the capacitor and flux in the inductor in the right-hand branch of the circuit, and define

$$
V_{2}\left(x_{3}, x_{4}\right)=\int_{0}^{x_{4}} \frac{x}{L(x)} d x+\int_{0}^{x_{3}} \frac{x}{C(x)} d x .
$$

Differentiating w.r.t. t gives $\dot{V}_{2}=\dot{x}_{3} e-R_{2} x_{4}^{2} / L^{2}\left(x_{4}\right)$. Therefore, defining $V=V_{1}+V_{2}$ and using the fact that $\dot{x}_{1}+\dot{x}_{3}=i$ (since the
currents in the two branches of the circuit must sum to i), we get

$$
\begin{aligned}
V & =\int_{0}^{x_{2}} \frac{x}{L(x)} d x+\int_{0}^{x_{4}} \frac{x}{L(x)} d x+\int_{0}^{x_{1}} \frac{x}{C(x)} d x+\int_{0}^{x_{3}} \frac{x}{C(x)} d x \\
\dot{V} & =i e-\frac{R_{1}}{L^{2}\left(x_{2}\right)} x_{2}^{2}-\frac{R_{2}}{L^{2}\left(x_{4}\right)} x_{4}^{2} .
\end{aligned}
$$

and $V \geq 0$ since $V_{1}, V_{2} \geq 0$.
Opening the switch forces $i=0$, so

$$
\dot{V}=-\frac{R_{1}}{L^{2}\left(x_{2}\right)} x_{2}^{2}-\frac{R_{2}}{L^{2}\left(x_{4}\right)} x_{4}^{2}
$$

and since the level sets $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): V \leq \bar{V}\right\}$ are bounded (when \bar{V} is sufficiently small), it follows from the local invariant set theorem that the system is (locally) asymptotically stable.

Specifically, $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ must converge to the largest invariant set within the set of states such that $\dot{V}=0$, i.e. $x_{2}=x_{4}=0$ (so the currents \dot{x}_{1} and \dot{x}_{3} must converge to zero) and $\dot{x}_{2}=\dot{x}_{4}=0$, implying that x converges asymptotically to a steady state such that $x_{1} / C\left(x_{1}\right)=x_{3} / C\left(x_{3}\right)$ and $\left(x_{2}, x_{4}\right)=(0,0)$. This asymptotic stability property is global if V_{1} and V_{2} are radially unbounded. Note that the equilibrium points to which the system can converge lie on a 2dimensional surface in state space (defined by $x_{1} / C\left(x_{1}\right)=x_{3} / C\left(x_{3}\right)$) and also that the same analysis can be applied to any number of LCR branches connected in parallel.
8. (a). The rectangular region containing $G(j \omega)$ lies within $D(a, b)$ if $a=$ $-\frac{1}{3}$ and $b=\frac{1}{2}$, since $D(a, b)$ is then just touching its corners (Fig. 3). The open-loop system is stable, and the circle criterion therefore implies that the closed-loop system with $u=-\phi(y)$ will be asymptotically stable if ϕ lies in the sector $\left[-\frac{1}{3}, \frac{1}{2}\right]$.

Clearly this is not the only sector bound for ϕ for which the closedloop system is guaranteed to be stable by the circle criterion. In fact a family of discs $D(a, b)$ containing $G(j \omega)$ is generated as a is
increased from $-1 / 3$, and to allow for the largest possible value of b we need to set $a=0$ and $b=-1$, corresponding to sector bounds $\phi \in[0,1]$.
(b). Closed-loop stability does not apply to nonlinearities ϕ bounded by the union of the two sectors defined in part (a), i.e. $\left[-\frac{1}{3}, 1\right]$, since this includes nonlinearities not belonging to either of the sectors $\left[-\frac{1}{3}, \frac{1}{2}\right]$ and $[0,1]$. In particular, the disc centred on the real axis and intersecting the real axis at -1 and 3 does not entirely contain the box in which $G(j \omega)$ is known to lie, so it cannot be concluded from the circle criterion that the closed loop system will be stable.

Figure 3: Bounds on the Nyquist plot of $G(j \omega)$.

