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L ecture 1: Introduction

e In this course, we will study the topological properties of
solutions of ordinary differential equations, which can be done

without solving them

e Essentially about the geometry of the paths that describe the
time evolution of solutions, and how such paths can be
thought of as lying on ‘surfaces’

e Intimately associated with the idea of state or phase space
and how solutions are related to the ‘state’



Course summary

1.

Introduction to dynamical systems
Phase space and equilibria
The stable, unstable and centre subspaces

Lyapunov functions, gradient and Hamiltonian systems;
vector fields possessing an integral

Invariance. La Salle's theorem. Domain of attraction
Limit sets, attractors, orbits, limit cycles, Poincaré maps
Saddle-node, transcritical, pitchfork and Hopf bifurcations

Logistic map, fractals and Chaos. Lorenz equations



Course structure

e 8 Lectures

e Q&A sessions Thom LR2:
—  L1-4: MT week 7: Fri @ 4pm
—  L5-8: MT week 8: Fri @ 4pm

e C(lasses Thom LR6:
— L1-4: MT week 8: Mon @ 10,11,12pm Tue © 10,11am
—  L5-8: HT week 1: tbc

e Lecture notes, slides & recorded lectures available on Canvas



Example dynamical system: logistic equation

e The logistic equation models population growth of a single
species In an environment:

(- 7)

x population at time ¢
b>0: Dbirth rate

K > 0: carrying capacity of the environment

e Solution (see lecture notes):
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The logistic equation and its solution

The logistic equation

Kcebt

X —
K + cebt

d
d—f = br(1 - E) has the solution

e We have an analytic solution, but what does it say?
Is it informative to have this exact answer?

e What happens if £(0) = 07 and what does this signify?
e What happens as t — 0o? Does z(t) — K7
e Can we analyse these properties without solving the equation?

To address these questions we introduce geometric ideas
into the problem



Phase space

e An nth order ordinary differential equation (ODE) in a single
variable x(t) can be written as n coupled differential equations
in n variables x,(t), x,(t), ..., x,(t)

For example dQ_a: — bd—m +cx =
PR T Ty T
e . dfm] o 1][n], [0
R dat |22 ~ |=c b |z2| T |g
dt
e Each variable x4, x,, ...., x,, defines a coordinate in phase (or state)

space

e Solutions of the ODE create curves (or trajectories) in phase (or state)
space, which are determined by the intial conditions



Phase space: terminology

To emphasise geometric ideas we use concepts from geometry
to name phase spaces:

- if n =1 (1st order ODE) we have a phase line
- if n =2 (2nd order ODE) we have a phase plane

- if n > 2 we have a general phase space

We will find that collections of similar trajectories that solve a
problem form surfaces, which are sometimes called solution
manifolds (a fancy name for a smooth surface)

Recall that this is not totally new: phase space was mentioned in
P1 ‘Mathematical modelling’!



Returning to the logistic equation example

dx x
The logistic equation: =} (1 _ _>
’ SIHE SHHaT a UK

e This equation is 1st order (n = 1) so the solution trajectories will lie
on a phase line

e Also, there are special points where the solution remains stationary
(i.e. x(t) does not change with time).
such stationary points occur if
dx

E:() — b$(1_%):0 — x=0o0or K

e These special points are also called equilibria (of the equation)



Logistic equation on the phase line

. : dx x
The logistic equation: R (1 _ _>
S SHESH i UK

Instead of solving this (to find how x varies with t),
consider how the rate of change of x depends on x

r<00 — — <0
O<az< K = — >0

r>K — — <0

< O > @
0

phase portrait of the logistic equation
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Stable and unstable equilibria

dx x
e The logistic equation: BRI (1 _ _>
SHHE i UK
< O > o < X
0 K

e All trajectories near x = 0 move away from that equilibrium point:

we call such an equilibrium unstable

e All trajectories near x = K flow toward that equilibrium point:
such an equilibrium is called stable

e Note also that it is not possible to move from values x < K to
values x > K without crossing x = K; this makes motion stop!
Thus there is no overshoot at x = K
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Logistic equation: visualizing solutions

. . dx x
e The logistic equation: BRI (1 _ _>
SHHE i UK
< O > ¢ <
0 K

e Solutions x(t) for a few indicative initial conditions x:

15—

logistic growth with b =1,K =5 |

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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Example: damped single pendulum

2
damping k Ld_@ _ ) — Ld_@
at pivot * e mgsing =k dt
. k L
o Define 7= t\/F, b= £k, /L, then
d?0 . do
ﬁ = — Slﬂe — b%

db
e 2nd order, so two states; let x1 = 0 and zo = d—:
T
dCIZ‘l
— =2
dr :
dZIZ’Q

— —sinxy — bxo

dr
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Phase plane for damped pendulum

d
dr2 SH dr dxo ,
E:—smxl—b@

e Equilibrium points at 9 =sinxz; =0

=377 -2 7T -JT 0 27T 3T

14

— NN~ NN
O © O
. \\‘Q«;ﬂ“\\»‘gg:;\:‘g::

=377 -2 77 -7T 0 7T 27T 3T

X1
e Phase plane of the damped pendulum, b = 1/4/10
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Example: glycolitic oscillations

e Glycolysis is a process in which glucose is turned into energy
compounds like ATP inside cells

dx +oay + 22
— =—x+ay+cx
p Y Y
d
d—i:b—ay—ﬁy

x(t) and y(t) represent concentrations of reaction intermediates

Y

r=2>b r1 = f
_ .. b
e Equilibrium conditions: b so let
y = (a +b%)
CL—I—b2 L2 = b

dxq a
then = —x1 + (a n 62):17%:1:2

= (e (p)in
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Phase plane for glycolytic oscillations

dx

—1 = — 2 . . .
d W ar e e Study oscillations with
d. 2 = (). = (.

ax,  _ (a+b2) - a _x, b 2x12x2 a 0 03, b 0.6

dt a+b a+b

e Phase plane

e Trajectories for three ICs:

e e T S T e T e T S
/-‘L

6
5:
‘|
e Transients for {1.1,1.1} o
15
0

{x1(0), x2(0) }

= {0.1,0.1},{7,1}, {1.1,1.1}

3.0 ‘
25}
20¢F
1.5}
1.0
0.5
0.0
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Example: double pendulum

ﬁ_ E—Qcos(@l—ez)

dt

1+sin’ (6, -6,)

de, 2P, —Rcos(é’l —92)

dt— 1+sin*(6,-6,)
g [2RP,~ (B +2P})cos(6,-6,) |sin(6,- 6, )
d L [1+sin*(6,-6,)]
dp, _ o +[2Plf;—(1312+2Pzz)cos(91—92)}sin(91—92)
d L ’ [l+sin2(91—02)]2
40; -
20}
0 P ——— — e e — T .
w0, © e The two solutions start
a0l (6,6, P, P} = {2m/3,2m/3,0,0} very near the same
0 5 10 15 20 point in phase space,
o | | — but the transients differ
20 dramatically — why?
0 P - ~—— N
20} 0,
_40; {01, 82, P]J Pz} — {277:/3 + 001,277:/43,0,0}
0 S é S 110 - 115 - 20
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Example: the Mandelbrot set

e An iterative equation: zx4; = zf + ¢ with ¢ a complex number
e Question: if z, = 0, for which values of ¢ does |z,| remain bounded?

e Effect of varying c values e The set for all complex ¢

T - T T T T T T T T T T T T T T T

20 —

c =041 +))

1.5+

c = 035(1+))

0.5 1

ool € = 0325+ 0" *

Iiterations
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Our strategy

We will find equilibrium points of differential equations

The nature of each equilibrium point is largely established by
investigating the local linearization

We then study the geometry and topology (connectedness)
of regions around equilibria in phase space

We reason about behaviours of flows through these regions

To implement this strategy we will use topics from linear
algebra — eigenvalues and eigenvectors of matrices
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Eigenvalues and eigenvectors review

e Suppose A is square matrix that maps vectors from R" to R"

e An eigenvalue A1 and corresponding eigenvector v of A satisfy
Av = Av

e The set of eigenvalues has multiplicity n and is calculated by
finding roots of the characteristic equation

det(A—AI) =0

e Recall that complex eigenvalues come in conjugate pairs

e Further recall that if all the eigenvalues are real and distinct
then there is a complete (n-dimensional) set of eigenvectors

20



Eigenvectors as a basis

If a matrix affords a complete set of n eigenvectors, then they
will span the space R"

Hence the set of eigenvectors {vy, ..., v,} is a basis for R"

Put another way, any vector x in R™ can be written uniquely as
a linear combination of the eigenvectors in this case:

n

X=cVy+ +c,v, = 2 CiV;
i=1

Note that if the eigenvalues of a matrix are not distinct

(i.e., a root of the characteristic equation repeats) then there
may not be a complete set of eigenvectors — there will be a
set of ‘generalized eigenvectors’, however (see Perko Ch. 1)
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Matrix diagonalization

If a real nXn matrix A has n distinct real eigenvalues, then
there is a complete set of real eigenvectors that span R™

In this case A is diagonalizable, that is, there exists an
invertible matrix V and diagonal matrix A such that

AV=VA = A=VAV!

The kth diagonal entry of A is the kth eigenvalue of A
the kth column of V is the corresponding eigenvector

22



Complex eigenvalues

e If a nxn matrix A has complex eigenvalues, then its eigenvectors
will be complex so A cannot be diagonalized using matrices of

real numbers

e Thereis a simple way to rearrange the diagonalization in the case
of 2 X 2 matrices with complex eigenvalues:

A € {a+jb, a— jb}

det(A — M) =0 — | .
v e{u+jw, u— jw}

e Let V' = |w u], then we can write the standard form

A=VDV!l=V [Z _ab] v/
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Example of complex diagonalization

3 =2

e Consider A = [1 1

] with eigenvalues: \{ =24+ j, Ao =2 —

® s0 A\ =a=xjb, v=utjwwith (a,b) = (2,1), (u,w) = (H ’ H)

A (10 1=d 2+ 0 J[i+s 147"
— |1 1 0 2—4|| 1 1
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Linear autonomous systems

An autonomous system of first-order differential equations
depends on the dependent variables, but does not explicitly
include the independent variable:

d d
j); = (x) ?); = f(t,x)
autonomous not autonomous

The linear autonomous system of first-order differential
equations can be written in matrix form as

ﬁzAx
dt

~ AK
Define e* = 2? then if A is diagonalizable

T ()=o)
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Computation of matrix exponentials

e To compute the matrix exponential, we use diagonalization:

Ak VAV AF e .
Z . Z :V(Zk')vl V[ -__A}Vl

k=0

e This is straightforward if the eigenvalues are real and distinct

e For complex eigenvalues, we can use the standard form of a 2 x 2:

since A=a+tijb = e =e%cosb=jsinbd)

A _ € “cosb —e%sinb

\%
e?sinb e%cosb

we get €

e See Perko Differential equations and dynamical systems, sec 1.5
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Definitions for dynamical systems 1

Generally, ordinary differential equations of order n can be repre-
sented instead as a set of n coupled 1st-order ODEs

Each of the n dependent variables in this ODE system is called
a state, z;(t) € R, and x(t) € R” is the state vector

Generally we can write the ODE system as a list of functions
t; = f;(x) where f; is a mapping from the vector space of states
into the real numbers, i.e. f; : R - R

If f; is defined on a subspace D C R", called the domain of the
function, then we write f; : D — R

(e.g. the square root function is limited to D = {x : x > 0})

We let f represent the vector whose ith entry is f;, sof : D — R"
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Definitions for dynamical systems 2

e The general set of nonlinear autonomous systems can be written as

dx
“_f
- = f(x)

e Systems can have parameters so f may depend on a vector p € RP:

d d
d—}; =f(x;p) = d—}t( is a function f of x parameterised by p

e We can also consider difference equations (also called maps),
which are not ODEs but follow recurrence relations:

Xk+1 = g(Xk; P)

28



Bird's-eye view of dynamical systems

e Given an autonomous ordinary differential equation

dx

e A solution of the ODE is a map from the time interval t € {a, B}
into the space R™, which passes through initial condition x, € R"

d
x : (a, B) — R"™ such that d—); = f(x(¢); p) and x(0) = xg

e Note that if the initial condition isat t =0, then a <0 and >0

e Here we will not be concerned with solving such equations —
instead we will look at the geometry of these solutions
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Existence and uniqueness of solutions

e Does a solution exist? Is it unique?

e The study of existence and uniqueness is quite technical...

e The lecture notes describe an aside (non-examinable!)
considering existence (Lipschitz continuity), see

— lecture notes sec. 1.3.1
— Perko sec. 2.2 & 2.3
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