Lecture 2: Equilibria and Stability

Mark Cannon mark.cannon@eng.ox.ac.uk

Lecture 2: Equilibria and Stability

- Equilibrium definitions
- Stability definitions for equilibrium points
- Phase space of Linear systems
- Linearization and the stability of equilibria of nonlinear systems

Equilibria of continuous time systems

An **equilibrium** is a point in state space where $\dot{\mathbf{x}} = 0$:

 \mathbf{x}^* is an equilibrium of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ if and only if $\mathbf{f}(\mathbf{x}^*) = 0$

- If $\mathbf{x}(0) = \mathbf{x}^*$, then $\mathbf{x}(t) = \mathbf{x}^*$ for all t hence \mathbf{x}^* is sometimes called a **fixed point**
- For a **linear** autonomous system with non-zero eigenvalues, there is only one solution to $A\mathbf{x}^* = 0$, namely $\mathbf{x}^* = 0$
- In general there may be many points \mathbf{x}^* satisfying $\mathbf{f}(\mathbf{x}^*) = 0$ therefore a **nonlinear** system can have many equilibria

Equilibria of maps

Discrete time systems also have equilibrium points

$$\mathbf{x}^*$$
 is an equilibrium of $\mathbf{x}_{k+1} = g(\mathbf{x}_k)$ if and only if $g(\mathbf{x}^*) = \mathbf{x}^*$

 The equilibria of a discrete time system are the fixed points of the state update equation, so that

$$\mathbf{x}_0 = \mathbf{x}^* \implies \mathbf{x}_k = \mathbf{x}^* \text{ for all } k$$

• For differential equations, there is a flow of solutions through phase space but the state of a discrete time system 'jumps' between points space, making their trajectories harder to visualize

Flows and equilibria

- We can think of the solution to a non-linear differential equation as a flow in an n-dimensional phase space, representing it with streamlines as we would for flow of a liquid
- In this analogy the vector-valued function f in

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x})$$

is a vector field defining the flow velocity

- Flows can end or begin at equilibria, or circulate around them
- The stability of the flow near an equilibrium is an important characteristic, which we will focus on today

Stability of flow equilibria

• **Definition**: An equilibrium point \mathbf{x}^* is said to be **stable** if, given any $\varepsilon > 0$, there exists $\delta > 0$ such that all solutions $\mathbf{x}(t)$ satisfy

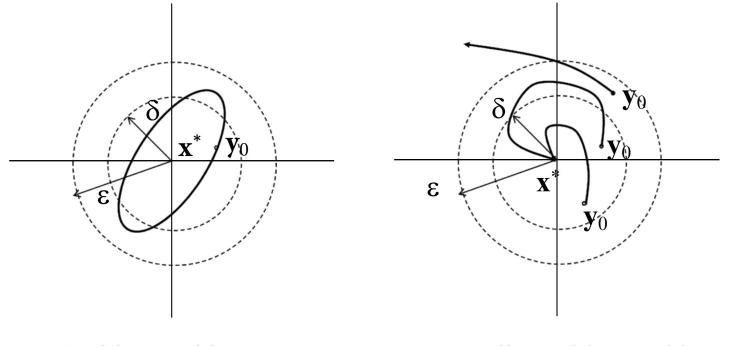
$$|\mathbf{x}(t) - \mathbf{x}^*| < \varepsilon$$
 for all $t \ge 0$ whenever $|\mathbf{x}(0) - \mathbf{x}^*| < \delta$

• Otherwise the equilibrium point is said to be **unstable** (i.e. if, for some $\varepsilon > 0$, no $\delta > 0$ exists satisfying this condition)

• **Definition**: An equilibrium point \mathbf{x}^* is asymptotically stable if it is stable and $\beta > 0$ exists such that

$$\lim_{t\to\infty} |\mathbf{x}(t) - \mathbf{x}^*| = 0 \text{ whenever } |\mathbf{x}(0) - \mathbf{x}^*| < \beta$$

Picturing stability



Stable equilibrium

Asympotically stable equilibrium

- The solution cannot escape from a stable equilibrium
- The solution converges to the equilibrium point if it starts close enough to an asymptotically stable equilibrium

Epsilon-delta arguments

- Observe that the argument made within a definition like $|\mathbf{x}(t) \mathbf{x}^*| < \varepsilon \text{ for all } t \ge 0 \text{ whenever } |\mathbf{x}(0) \mathbf{x}^*| < \delta$ takes the form of a game:
 - 1 I give you a positive number ε that I am free to choose
 - 2 you respond with a number δ that satisfies some condition
 - 3 if you can find a number δ for any ε , you 'win'

 Many proofs and definitions in mathematics are based on this kind of argument

Exponential stability

• **Definition**: An equilibrium point \mathbf{x}^* is **exponentially stable** if \mathbf{x}^* is asymptotically stable and there exist finite constants α , β , $\delta > 0$ such that

$$|\mathbf{x}(t) - \mathbf{x}^*| < \alpha e^{-\beta t} |\mathbf{x}(0) - \mathbf{x}^*| \ \forall t \ge 0 \text{ whenever } |\mathbf{x}(0) - \mathbf{x}^*| < \delta$$

- As well as requiring that the solution is stable and converges to the equilibrium point (asymptotic stability), this also quantifies the **rate of convergence**
 - i.e. how fast the solution flows to the equilibrium point

Flows in 2x2 linear systems

 Ultimately we will study flows around the equilibrium points of nonlinear ODE systems by examining local linearizations about those points

 Each flow has a topology (a shape) that falls into one of a number of distinct categories

 The flows in local linearizations can often be continuously distorted into flows that solve the non-linear ODE systems

 It is useful to study the topologies of some example linear systems to understand how families of solutions look

The uncoupled 2x2 first-order linear system

Perhaps the simplest problem we can think of is

$$\frac{dx_1}{dt} = \alpha_1 x_1$$
solved by
$$x_1(t) = x_1(0)e^{\alpha_1 t}$$

$$\frac{dx_2}{dt} = \alpha_2 x_2$$

$$x_2(t) = x_2(0)e^{\alpha_2 t}$$

 These can be viewed as parametric equations to describe the shapes of curves in phase space

$$[x_1(t)]^{\alpha_2/\alpha_1} = [x_1(0)]^{\alpha_2/\alpha_1} e^{\alpha_2 t} = x_2(0)^{-1} [x_1(0)]^{\alpha_2/\alpha_1} x_2(t)$$

$$x_2 = cx_1^{\alpha_2/\alpha_1}$$

Stability of the uncoupled 2x2 system

Let us inspect the system

$$\frac{dx_1}{dt} = \alpha_1 x_1$$
solved by
$$x_1(t) = x_1(0)e^{\alpha_1 t}$$

$$x_2(t) = x_2(0)e^{\alpha_2 t}$$

$$x_2(t) = x_2(0)e^{\alpha_2 t}$$

- The system has an equilibrium point at the origin (it is a linear autonomous system)
- If $\alpha_1 < 0$ and $\alpha_2 < 0$ then the system is asymptotically stable, in fact **exponentially stable**
- If $\alpha_1 > 0$ or $\alpha_2 > 0$ then the origin is **unstable**

Coupled 2x2 first-order linear system

Complexity goes up if we consider a coupled linear system,

$$\frac{dx_1}{dt} = ax_1 + bx_2$$
or $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$, where $\mathbf{A} = \begin{bmatrix} a & d \\ c & b \end{bmatrix}$

$$\frac{dx_2}{dt} = cx_1 + dx_2$$

- Here the solution for initial condition $\mathbf{x}(0)$ will be $\mathbf{x}(t) = e^{t\mathbf{A}}\mathbf{x}(0)$
- Since the matrix exponential is involved here, we know that if the coefficient matrix is diagonalizable, then

$$e^{t\mathbf{A}} = \mathbf{V}\mathrm{diag}\left\{e^{\lambda_i t}\right\}\mathbf{V}^{-1}$$

and can be constructed using eigenvalues and eigenvectors

Eigenvalues

Here the eigenvalues of A are found by solving

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det\left[\begin{bmatrix} a - \lambda & d \\ c & b - \lambda \end{bmatrix}\right] = \lambda^2 - (a + b)\lambda + (ab - cd) = 0$$

 This characteristic equation can also be written in terms of the trace and determinant of A:

$$\lambda^2 - \operatorname{tr}(\mathbf{A})\lambda + \det(\mathbf{A}) = 0$$

Generally the trace of a matrix is the sum of its eigenvalues:

$$\operatorname{tr}(\mathbf{A}) = \lambda_1 + \lambda_2$$

The determinant of a matrix is the product of its eigenvalues:

$$\det(\mathbf{A}) = \lambda_1 \lambda_2$$

Solving with eigenvectors and eigenvalues

 If the eigenvalues of A are real and distinct, then we can write any initial condition as a combination of the eigenvectors:

$$\mathbf{x}(0) = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{V} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \implies \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \mathbf{V}^{-1} \mathbf{x}(0)$$

• Then using $\mathbf{x}(t) = e^{t\mathbf{A}}\mathbf{x}(0)$, we have

$$\mathbf{x}(t) = e^{t\mathbf{A}}\mathbf{V} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \mathbf{V}\operatorname{diag}\left\{e^{\lambda_i t}\right\}\mathbf{V}^{-1}\mathbf{V} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = c_1 e^{\lambda_1 t}\mathbf{v}_1 + c_2 e^{\lambda_2 t}\mathbf{v}_2$$

 The solution is a linear combination of exponential transients with decay rates determined by the eigenvalues

Characteristics of linear system trajectories

- If $Re(\lambda) < 0$, then the component along the corresponding eigenvector decays to zero
- If $Re(\lambda) > 0$, then the component along the corresponding eigenvector grows without bound
- If $\lambda = 0$, the component along the corresponding eigenvector remains constant
- If $Im(\lambda) \neq 0$, then the solution orbits or spirals around the origin
- If $Im(\lambda) = 0$, then the solution does not orbit or spiral
- If λ is real, the solution tends toward the eigenvector with the dominant eigenvalue

Coordinate transformation to normal form

- Characteristic trajectory shapes in 2-D phase space are found via a coordinate transformation that puts A in a standard form:
 - Given $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$, define new coordinates $\mathbf{y} = \mathbf{K}^{-1}\mathbf{x}$
 - This transforms the equations of motion to $\dot{y} = KAK^{-1}y$
 - If eigenvalues of **A** are real and distinct let $\mathbf{K} = \mathbf{V}$: $\mathbf{V}\mathbf{A}\mathbf{V}^{-1} = \mathbf{D}$

$$\dot{\mathbf{y}} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \mathbf{y}$$

- If eigenvalues of **A** are complex, $\lambda = a \pm jb$, then let **K** = **V**':

$$\dot{\mathbf{y}} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \mathbf{y}$$

The transformed matrix is called the normal form of A

Degeneracy of eigenvectors

• In the case that eigenvalues are real but not distinct, i.e. if $\lambda_1 = \lambda_2$, then there may only be a single (degenerate) eigenvector. Example:

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 has eigenvalue $\lambda = 1$ (multiplicity 2), eigenvector $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

• In this case, form a generalized eigenvector, \mathbf{v}_2 , such that

$$(\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{v}_2 = \mathbf{v}_1 \implies (\mathbf{A} - \lambda_1 \mathbf{I})^2 \mathbf{v}_2 = (\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{v}_1 = \mathbf{o}$$

• The transformation $\mathbf{V}' = [\mathbf{v}_1 \quad \mathbf{v}_2]$ then expresses \mathbf{A} as

$$\mathbf{A} = \mathbf{V'} \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} (\mathbf{V'})^{-1}$$

This is called the normal form of a degenerate matrix A

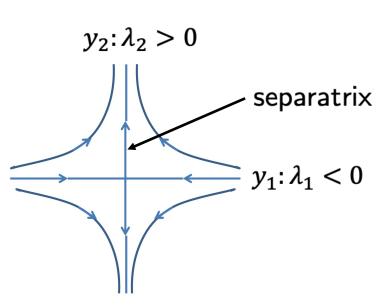
Saddle equilibrium points via normal forms

• If the eigenvalues of $\bf A$ are real and $\lambda_1 \lambda_2 < 0$, then the equilibrium of $\dot{\bf x} = {\bf A}{\bf x}$ is unstable and is called a saddle point

Transforming coordinates:
$$\mathbf{V}^{-1}\mathbf{A}\mathbf{V} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

- This solution will have four asymptotes that approach the origin, two as $t \to \infty$ and two as $t \to -\infty$
- These four trajectories are called separatrices

a saddle shape in the phase plane:



Stable equilibrium points via normal forms

- If the eigenvalues of $\bf A$ are real and both $\lambda_1 < 0$ and $\lambda_2 < 0$, then the equilibrium will be stable
- Three cases:

- Eigenvalues distinct,
$$\mathbf{V}^{-1}\mathbf{A}\mathbf{V} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

Eigenvalues repeated but two eigenvectors:

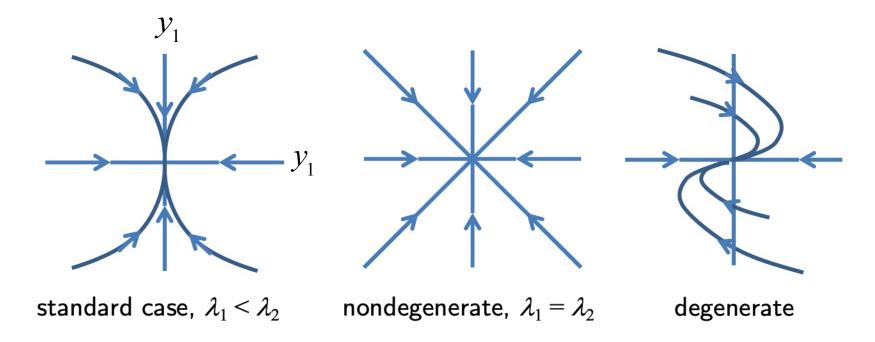
$$\mathbf{V}^{-1}\mathbf{A}\mathbf{V} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{bmatrix}$$

Eigenvalues repeat but A degenerate:

$$\left(\mathbf{V'}\right)^{-1} \mathbf{A} \left(\mathbf{V'}\right) = \begin{bmatrix} \lambda_1 & 1 \\ 0 & \lambda_1 \end{bmatrix}$$

Stable and unstable flow shapes

- Consider the transformed coordinates $\mathbf{y} = \mathbf{V}^{-1}\mathbf{x}$ or $\mathbf{y} = (\mathbf{V}')^{-1}\mathbf{x}$
- Stable solutions when both eigenvalues are negative:



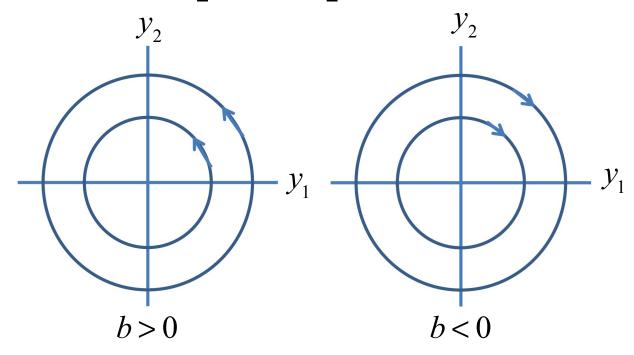
 If both eigenvalues are positive then the solutions are unstable; flows in the phase plane look the same as above, but the arrows point in the opposite directions

Centre equilibrium points via normal forms

- If the eigenvalues are purely imaginary (real part equal to zero),
 then the corresponding equilibrium point is marginally stable
- In this case the form from slide 16 (with transformation from lecture 1, slide 23) shows that the normal form is

$$\mathbf{V'A}(\mathbf{V'})^{-1} = \begin{bmatrix} 0 & -b \\ b & 0 \end{bmatrix}$$

Phase portraits:



Stable and unstable spirals

If the eigenvalues are generally complex, then the normal form is

$$\mathbf{V'A}(\mathbf{V'})^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

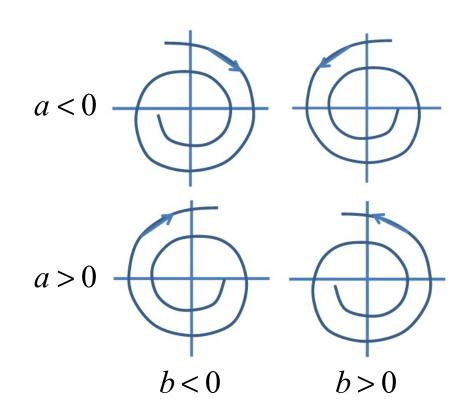
- Recall the eigenvalues are $\lambda_1 = a + jb$; $\lambda_2 = a jb$
- Phase portraits are spirals

a < 0: spiral is stable

a > 0: spiral is unstable

b > 0: spiral is anticlockwise

b < 0: spiral is clockwise



Phase space equation summary

• We have drawn diagrams showing how solutions behave in normal forms of the system $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ with $\mathbf{x}(0) = \mathbf{x}_0$:

$$\dot{\mathbf{y}} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \mathbf{y} \Rightarrow \mathbf{y}(t) = \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix} \mathbf{y}_0$$
 real; complete eigenvector set

$$\dot{\mathbf{y}} = \begin{bmatrix} \lambda_1 & 1 \\ 0 & \lambda_1 \end{bmatrix} \mathbf{y} \implies \mathbf{y}(t) = e^{\lambda_1 t} \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \mathbf{y}_0 \qquad \text{degenerate}$$

$$\dot{\mathbf{y}} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \mathbf{y} \implies \mathbf{y}(t) = e^{at} \begin{bmatrix} \cos bt & -\sin bt \\ \sin bt & \cos bt \end{bmatrix} \mathbf{y}_0 \quad \text{complex}$$

Example of coordinate change

• Consider the system
$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix} \mathbf{x}$$

- Eigenvalues from characteristic eq: $\lambda^2 + \lambda 2 = 0 \implies \lambda \in \{1, -2\}$
- Eigenvectors: $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

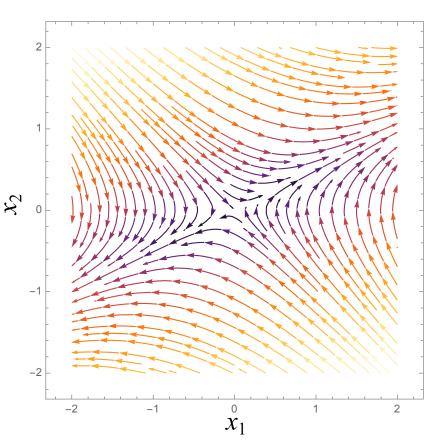
$$\mathbf{A} = \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1} = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}^{-1}$$

Define new coordinates $\mathbf{y} = \mathbf{V}^{-1}\mathbf{x}$, which place transformed axes in $[2 \ 1]^T$ (unstable) direction and $[-1 \ 1]^T$ (stable) direction

Example continued

- Continue with $\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}^{-1} \dot{\mathbf{x}} = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}^{-1} \mathbf{x}$
- Solution is $\mathbf{x}(t) = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} e^t & 0 \\ 0 & e^{-2t} \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}^{-1} \mathbf{x}_0$

$$\mathbf{x}(t) = \frac{1}{3} \begin{bmatrix} e^{-2t} + 2e^t & -2e^{-2t} + 2e^t \\ -e^{-2t} + e^t & 2e^{-2t} + e^t \end{bmatrix} \mathbf{x}_0 \quad \mathcal{S}_0$$



Linearization of nonlinear systems

- ullet Consider the nonlinear system $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with equilibrium at \mathbf{x}^*
- Let $\mathbf{x} = \mathbf{x}^* + \mathbf{w}$ and assume that \mathbf{f} is differentiable. Then the Taylor expansion of the ith entry, f_i , of \mathbf{f} gives

$$f_i(\mathbf{x}^* + \mathbf{w}) = f_i(\mathbf{x}^*) + \sum_{j=1}^n \left(\frac{\partial f_i}{\partial x_j} \Big|_{\mathbf{x}^*} w_j + O(|w_j|^2) \right)$$

Noting that equilibrium is independent of time by definition

$$\dot{\mathbf{x}} = \dot{\mathbf{w}} = D\mathbf{f}(\mathbf{x}^*)\mathbf{w} + O(\|\mathbf{w}\|^2)$$

• The matrix $D\mathbf{f}(\mathbf{x})$ is called the **Jacobian** of the vector-valued function \mathbf{f} , with ijth entry $(D\mathbf{f})_{ij} = \partial f_i/\partial x_j$

Hyperbolic equilibria

Definition (hyperbolic equilibrium): If \mathbf{x}^* is an equilibrium of system $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$, then \mathbf{x}^* is called a *hyperbolic fixed point* if all eigenvalues of the Jacobian $D\mathbf{f}(\mathbf{x}^*)$ have nonzero real parts

- This leads to an important **theorem**: if an equilibrium point is a hyperbolic fixed point and all the eigenvalues of the Jacobian have negative real parts, then the equilibrium solution $\mathbf{x} = \mathbf{x}^*$ is asymptotically stable
- Note that this proves asymptotic stability but does not say anything about the size of the region of stability
 - this depends on the size of δ from the game on slide 7
- In lecture 3 we will see how linearizations near equilibrium points can be used to get information about nonlinear systems

Example: Duffing oscillator

The Duffing oscillator is described for $\gamma \geq 0$ by

$$\frac{dx}{dt} = y$$

$$\frac{dy}{dt} = x - x^3 - \gamma y$$

- equilibria: $(x^*, y^*) = (0, 0)$ and $(\pm 1, 0)$
- Jacobian: $D\mathbf{f} = \begin{bmatrix} 0 & 1 \\ 1 3x^2 & -\gamma \end{bmatrix}$
- at (0,0): $\lambda_{1,2}=\frac{-\gamma\pm\sqrt{\gamma^2+4}}{2}$ \Longrightarrow unstable at $(\pm 1,0)$: $\lambda_{1,2}=\frac{-\gamma\pm\sqrt{\gamma^2-8}}{2}$ \Longrightarrow asymptotically stable if $\gamma>0$
- If $\gamma = 0$, $(\pm 1, 0)$ is a centre \implies local linearization inconclusive

Example: Duffing oscillator

Phase plane of the Duffing oscillator with $\gamma=0.5\,$

