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Lecture 2: Equilibria and Stability

e Equilibrium definitions

e Stability definitions for equilibrium points

e Phase space of Linear systems

e Linearization and the stability of equilibria of nonlinear systems



Equilibria of continuous time systems

An equilibrium is a point in state space where x = 0:

x* is an equilibrium of x = f(x) if and only if f(x*) =0

o If x(0) =x*, then x(t) = x* for all ¢
hence x* is sometimes called a fixed point

e For a linear autonomous system with non-zero eigenvalues,
there is only one solution to Ax™ = 0, namely x* =0

e In general there may be many points x* satisfying f(x*) = 0
therefore a nonlinear system can have many equilibria



Equilibria of maps

Discrete time systems also have equilibrium points

*

x* is an equilibrium of xx11 = g(xx) if and only if g(x*) = x*

e The equilibria of a discrete time system are the fixed points of
the state update equation, so that

Xg =X = — X =x forallk
e For differential equations, there is a flow of solutions through

phase space but the state of a discrete time system ‘jumps’ be-
tween points space, making their trajectories harder to visualize



Flows and equilibria

e We can think of the solution to a non-linear differential equation
as a flow in an n-dimensional phase space, representing it with
streamlines as we would for flow of a liquid

e In this analogy the vector-valued function f in

dx
R — f

is a vector field defining the flow velocity

e Flows can end or begin at equilibria, or circulate around them

e The stability of the flow near an equilibrium is an important char-
acteristic, which we will focus on today



Stability of flow equilibria

e Definition: An equilibrium point x* is said to be stable if, given
any € > 0, there exists § > 0 such that all solutions x(¢) satisfy

x(t) — x*| < e for all t > 0 whenever |x(0) — x*| < §

e Otherwise the equilibrium point is said to be unstable
(i.e. if, for some € > 0, no § > 0 exists satisfying this condition)

e Definition: An equilibrium point x* is asymptotically stable
iIf it is stable and 5 > 0 exists such that

lim |x(t) — x*| = 0 whenever |x(0) — x*| < 3

t—o0



Picturing stability
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Stable equilibrium Asympotically stable equilibrium

e The solution cannot escape from a stable equilibrium

e The solution converges to the equilibrium point if it starts close
enough to an asymptotically stable equilibrium



Epsilon-delta arguments

e Observe that the argument made within a definition like

Ix(t) — x*| < € for all t = 0 whenever |x(0) —x*| < §

takes the form of a game:

1 | give you a positive number ¢ that | am free to choose
2 you respond with a number § that satisfies some condition

3 if you can find a number § for any &, you ‘win’

e Many proofs and definitions in mathematics are based on this
kind of argument



Exponential stability

e Definition: An equilibrium point x* is exponentially stable if
x* Is asymptotically stable and there exist finite constants
a, B, 0 > 0 such that

x(t) — x*| < ae™Ptx(0) — x*| Vt > 0 whenever |x(0) — x*| < §

e As well as requiring that the solution is stable and converges
to the equilibrium point (asymptotic stability), this also
quantifies the rate of convergence

I.e. how fast the solution flows to the equilibrium point



Flows in 2x2 linear systems

e Ultimately we will study flows around the equilibrium points of
nonlinear ODE systems by examining local linearizations

about those points

e Each flow has a topology (a shape) that falls into one of a
number of distinct categories

e The flows in local linearizations can often be continuously
distorted into flows that solve the non-linear ODE systems

e It is useful to study the topologies of some example linear
systems to understand how families of solutions look



The uncoupled 2x2 first-order linear system

e Perhaps the simplest problem we can think of is

dx

7; o solved by & (t) =X (O)Qalt
dx, - oz, X, (t) =X, (O)eazt
dt

e These can be viewed as parametric equations to describe the
shapes of curves in phase space

()] =L 0)] e =, (0) [ 0)]“ ()
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Stability of the uncoupled 2x2 system

e Let us inspect the system

%2 OCl)C1 ) = 0 ot
dt solved by xl( )_xl( )e
% - oz, X, (t) =X, (O)eazt

e The system has an equilibrium point at the origin (it is a linear
autonomous system)

e If ;<0 and a, <0 then the system is asymptotically stable,
in fact exponentially stable

e |If ;>0 or ,> 0 then the origin is unstable
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Coupled 2x2 first-order linear system

e Complexity goes up if we consider a coupled linear system,

a’x1
— =ax, + bx2 J
dt or x=Ax, where A= ¢
dx2 c b
—==cx, + dx2
dt

e Here the solution for initial condition x(0) will be x(t) = e*Ax(0)

e Since the matrix exponential is involved here, we know that if the
coefficient matrix is diagonalizable, then

e = Vdiag{eﬂ”}V_1

and can be constructed using eigenvalues and eigenvectors
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Eigenvalues

e Here the eigenvalues of A are found by solving

det(A—lI):detu hd D:/lz—(a+b)/l+(ab—cd):0

e This characteristic equation can also be written in terms of the
trace and determinant of A:

A*—tr(A)A+det(A)=0

e Generally the trace of a matrix is the sum of its eigenvalues:

tr(A) = A+ A,

e The determinant of a matrix is the product of its eigenvalues:

det(A)=2,4,
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Solving with eigenvectors and eigenvalues

If the eigenvalues of A are real and distinct, then we can write
any initial condition as a combination of the eigenvectors:

X(O) =cV +cv, =V =

Then using x(t) = e®®x(0), we have

x(¢)=

A
eV

= Vdiag{e*' | V'V

= V_IX(O)

_ At Ayt
=ce Vv, + c,e-"v,

The solution is a linear combination of exponential transients

with decay rates determined by the eigenvalues



Characteristics of linear system trajectories

e If Re(4) <0, then the component along the corresponding
eigenvector decays to zero

e |If Re(1) > 0, then the component along the corresponding
eigenvector grows without bound

e |f A =0, the component along the corresponding eigenvector
remains constant

e If Im(A) # 0, then the solution orbits or spirals around the origin
e If Im(A) = 0, then the solution does not orbit or spiral
e If Ais real, the solution tends toward the eigenvector with the

dominant eigenvalue
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Coordinate transformation to normal form

e Characteristic trajectory shapes in 2-D phase space are found
via a coordinate transformation that puts A in a standard form:

— Given X = AX, define new coordinates y = K-!x

— This transforms the equations of motion to ¥ = KAK™'y

— If eigenvalues of A are real and distinct let K=V: VAV-! =D

y:

A0

1

0 A,

y

— If eigenvalues of A are complex, A =a £/b, then let K=V":

g

a —b
b a

b

e The transformed matrix is called the normal form of A
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Degeneracy of eigenvectors

In the case that eigenvalues are real but not distinct,
i.e. if A, =A4,, then there may only be a single (degenerate)
eigenvector. Example:

0 1

In this case, form a generalized eigenvector, v,, such that

(A-Al)v,=v, = (A-AI)v,=(A-A1)v,=0

The transformation V' = [V1 V2] then expresses A as
a=v| 4 vy
0 A

This is called the normal form of a degenerate matrix A

[1 1] has eigenvalue A = 1 (multiplicity 2), eigenvector v; = [

)
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Saddle equilibrium points via normal forms

If the eigenvalues of A are real and 4,4, <0, then the equilibrium
of X = AX is unstable and is called a saddle point

A0

1

0 A,

This solution will have four asymptotes that approach the origin,
two as t = oo and two as t = —©

Transforming coordinates: V'AV =

These four trajectories are called separatrices
yzlﬁ.z >0
separatrix

a saddle shape in

the phase plane: g ) y1:41 <0
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Stable equilibrium points via normal forms

e If the eigenvalues of A are real and both 4, <0 and 4, <0, then
the equilibrium will be stable

e Three cases:

. - - 1 2Jl O
— Eigenvalues distinct, VAV =
0 A,
. . -1 2’1
— Eigenvalues repeated but two eigenvectors: VAV = 0
: 4 A,
— Eigenvalues repeat but A degenerate: (V') A(V'): )




Stable and unstable flow shapes

e Consider the transformed coordinates y=V7'x or y= (V')_lx

e Stable solutions when both eigenvalues are negative:

Y
> <€ y1 <
standard case, 4, < A4, nondegenerate, 4, = 4, degenerate

e If both eigenvalues are positive then the solutions are unstable;
flows in the phase plane look the same as above, but the
arrows point in the opposite directions
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Centre equilibrium points via normal forms

If the eigenvalues are purely imaginary (real part equal to zero),
then the corresponding equilibrium point is marginally stable

In this case the form from slide 16 (with transformation from
lecture 1, slide 23) shows that the normal form is

V'A(V')l{ 2 _ob }

yz y2

AN, LN
\_

Phase portraits:
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Stable and unstable spirals

e |If the eigenvalues are generally complex, then the normal form is

V'A(V')lz[ X b }

a

e Recall the eigenvalues are A,=a+jb ; L,=a—jb

e Phase portraits are spirals

a<( /—

5 &
Zig spiral is stable k\ﬂ J

: spiral is unstable

b >0 : spiral is anticlockwise —
b <0 : spiral is clockwise / \
a>0 \CD )

b<( b>0

AT




Phase space equation summary

e We have drawn diagrams showing how solutions behave in

normal forms of the system X = Ax with x(0) = x,;:

V= y = y(t)=

sinbt cosbt

yz{ Z —b }y _ y(t)ze‘{ cosbt —sinbt }yo

real; complete
eigenvector set

degenerate

complex
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Example of coordinate change

e Consider the system X:[ 0 2 :|X
1 -1

e Eigenvalues from characteristic eq: A+A-2=0 = Ae {1,—2}

e Eigenvectors: VI:{ ? } sz{ -1 }
1
1
A= 0 2 — VDV~ = 2 -1 1 O 2 -1
I -1 1 1 0 2 1 1

e Define new coordinates y = V-Ix , which place transformed axes
in [2 1]T (unstable) direction and [—1 1] (stable) direction
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Example continued

2

e Continue with {1

e Solution is x(t): 2 -1
1 1

X(t):l e +2e 2e7' +2¢
3| —eH 4+ 2et+é

-1
1
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Linearization of nonlinear systems

*

e Consider the nonlinear system x = f(x) with equilibrium at x

e Let x = x* + w and assume that f is differentiable.
Then the Taylor expansion of the ith entry, f;, of f gives

i +w) = £+ Y (5
L j
e Noting that equilibrium is independent of time by definition
x =w = Df(x*)w + O(||w]|?)

e The matrix Df(x) is called the Jacobian of the vector-valued
function f, with ijth entry (Df);; = 0f;/0z;



Hyperbolic equilibria

Definition (hyperbolic equilibrium): If x* is an equilibrium of system
x = f(x), then x* is called a hyperbolic fixed point if all eigenvalues
of the Jacobian Df(x*) have nonzero real parts

e This leads to an important theorem: if an equilibrium point is
a hyperbolic fixed point and all the eigenvalues of the Jacobian
have negative real parts, then the equilibrium solution x = x* is
asymptotically stable

e Note that this proves asymptotic stability but does not say any-
thing about the size of the region of stability
— this depends on the size of 0 from the game on slide 7

e In lecture 3 we will see how linearizations near equilibrium points
can be used to get information about nonlinear systems
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Example: Duffing oscillator

The Duffing oscillator is described for v > 0 by

dx

E_y
@Zm—x?’—vy
dt

— equilibria: (x*,y*) = (0,0) and (£1,0)

. 0 1
— Jacobian: Df = [1 9.2 _7]

at (0,0) : Ao = = ”272+4 —> unstable

at (:l:l,O) : )\1’2 = —E 5 ala

— If v=0, (£1,0) is a centre = local linearization inconclusive

—> asymptotically stable if v > 0

28



Example: Duffing oscillator

Phase plane of the Duffing oscillator with v = 0.5

28



