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Lecture 3 overview

• This lecture focuses on the topic of differential manifolds,
– smooth surfaces that locally behave like a Euclidean space

• We are interested in paths on these manifolds and how they
characterize the solutions of differential equations; that is,
we are interested in differential manifolds in phase space

• We will again touch on hyperbolic equilibria, and also consider 
the manifolds associated with nonhyperbolic equilibria

• The first important idea is a vector subspace – a concept that 
generalizes the ideas of, say, lines within planes; manifolds 
extend this idea by allowing space to be curved
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Differential manifolds

• A manifold 𝑀 is locally made up
of patches copied from ℝ!

• e.g. here 𝑀 is the surface of
a sphere and the patches
are planes

• The definition of a differential 
manifold involves how 
different coordinate systems
are placed on 𝑀, and how 
neighboring patches 
transform into each other

ℝ!

𝜙
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Linear systems: stable, unstable, & centre subspaces 

• Since there are 𝑛 eigenvalues in total, 𝑠 + 𝑢 + 𝑐 = 𝑛

• Coefficient matrix 𝐀 generally has three kinds of eigenvalues:

• Last lecture we studied the 𝑛-dimensional linear system

- a stable set, such that Re 𝜆 < 0: 𝜆"#, 𝜆$# ,…, 𝜆%#

- an unstable set, such that Re 𝜆 > 0: 𝜆"&, 𝜆$&,…, 𝜆'&

- a centre set, such that Re 𝜆 = 0: 𝜆"(, 𝜆$(,…, 𝜆)(

𝑑𝐰
𝑑𝑡

= 𝐀𝐰
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The eigenvector basis

• If all the eigenvalues of 𝐀 are real and distinct, its 𝑛 eigenvectors 
span phase space, so any vector in the space can be expressed 
as a weighted sum of the eigenvectors 𝐯𝑖

• If the eigenvalues are complex or 𝐀 is degenerate, we have
other ways of defining 𝐯𝑖, for example through normal forms 

and the linear system will be solved by

• In particular, given initial condition 𝐰(0), we can write
<latexit sha1_base64="Icf6P1ujdrf7RqaiTR1nNPkj83U="></latexit>

w(0) = c1v1 + c2v2 + · · ·+ cnvn

<latexit sha1_base64="1H88/O5C9us0SPNdorVUt5YzeCo="></latexit>

w(t) = c1v1e
�1t + c2v2e

�2t + · · ·+ cnvne
�nt
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Bases for the subspaces
• For linear systems phase space can generally be split into

three subspaces spanned by different sets of eigenvectors:

𝐯"# "$%
& : associated eigenvalues have negative real parts (stable)

𝐯'( '$%
) : associated eigenvalues have positive real parts (unstable)

𝐯*+ *$%
, : associated eigenvalues have null real parts (centre)

• Each vector, multiplied by the appropriate function of time 
determined by the normal form, creates a component of the 
solution, summarized as 𝐰"# 𝑡 , 𝐰'( 𝑡 , 𝐰*+ 𝑡 ",',*

• These three components are written 𝐰 𝑡 = 𝐰# 𝑡 + 𝐰( 𝑡 + 𝐰+ 𝑡

𝐰 𝑡 =(
"$%

&

𝑐"#𝐰"#(𝑡) +(
'$%

)

𝑐'(𝐰'((𝑡) +(
*$%

,

𝑐*+𝐰*+(𝑡)
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Effect of a change of coordinates
• Last lecture we considered changes of coordinates 𝐲 = 𝐊*"𝐱

• Let the transformation 𝐓 be made up columnwise of the sets of 
constant eigenvectors we just identified: 𝐯"#, 𝐯'(, 𝐯*+ ",',*

• Let 𝐳 = 𝐓*"𝐰 be the new coordinates: 𝐳 = 𝐓*"𝐰 =
𝐳#
𝐳&
𝐳(

• 𝐓 transforms the coefficient matrix 𝐀 into a block diagonal matrix 
whose diagonal entries are normal forms:

𝐓*"𝐀𝐓 =
𝐀# 0 0
0 𝐀& 0
0 0 𝐀(
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New equations of motion

• Change coordinates of the governing system:

• Since the transformed coordinates separate the eigenvectors 
associated with each subspace, this breaks the equations of 
motion into three decoupled systems:

𝑑𝐰
𝑑𝑡 = 𝐀𝐰 ⇒ 𝐓

𝑑𝐳
𝑑𝑡 = 𝐀𝐓𝐳 ⇒

𝑑𝐳
𝑑𝑡 = 𝐓*"𝐀𝐓𝐳 ⇒

𝑑𝐳
𝑑𝑡 =

𝐀# 0 0
0 𝐀& 0
0 0 𝐀(

𝐳

𝑑
𝑑𝑡

𝐳#
𝐳&
𝐳(

=
𝐀# 0 0
0 𝐀& 0
0 0 𝐀(

𝐳#
𝐳&
𝐳(

⇒

𝑑𝐳#
𝑑𝑡 = 𝐀#𝐳#
𝑑𝐳𝐔
𝑑𝑡 = 𝐀&𝐳&
𝑑𝐳(
𝑑𝑡

= 𝐀(𝐳(
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Consequences of the coordinate change

• By introducing normal forms and changing coordinates we have 
split the solutions of the original governing system into three 
distinct subspaces: ES, EU, and EC

• If a solution starts in one of these subspaces, its trajectory will 
stay there; it will not cross into one of the other subspaces

• Since they are separated in this way, the subspaces of the 𝑛-
dimensional first-order linear autonomous problem

are said to be invariant with respect to the flow 𝑒𝐀𝑡

𝑑𝐰
𝑑𝑡 = 𝐀𝐰



𝑑𝐱
𝑑𝑡 =

−3 0 0
0 3 −2
0 1 1

𝐱

10

Example: decomposing into subspaces

Consider

• Eigenvalues: 𝜆 ∈ {−3, 2 ± 𝑗}

• Solution: 
stable and unstable spiral subspaces

𝐱(𝑡) =
𝑒*,- 0 0
0 𝑒$-(cos 𝑡 + sin 𝑡) −2𝑒$- sin 𝑡
0 𝑒$- sin 𝑡 𝑒$-(cos 𝑡 − sin 𝑡)

𝐱(0)

• Eigenvectors:

𝐯 ∈
1
0
0
,

0
1 + 𝑗
1

,
0

1 − 𝑗
1



Consider with 𝜆 < 0 and 𝛾 > 0
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Example: a degenerate subspace

• There is a repeated 
eigenvalue (𝜆)

• The top left 2x2 block is 
degenerate

• Here 𝐱3 is an unstable subspace
and 𝐱", 𝐱$ span a stable subspace

𝑑𝐱
𝑑𝑡

=
𝜆 1 0
0 𝜆 0
0 0 𝛾

𝐱



Consider
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Example: a centre subspace

• Here 𝐱3 is an unstable subspace;
and {𝐱1, 𝐱2} plane is a centre subspace

• Eigenvectors:

• Eigenvalues: 𝜆 ∈ {±𝑗, 2}
𝜆 ∈ {±𝑗, 2}

𝑑𝐱
𝑑𝑡 =

0 −1 0
1 0 0
0 0 2

𝐱

𝐯 ∈
1
𝑗
0
,
1
−𝑗
0

,
0
0
1
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Observations from the examples

• All points in the stable subspace flow along streamlines that 
end up at the origin

• All points in the unstable subspace flow away from the origin; 
if you go ‘upstream’ along the flow you end up at the origin

• No simple generalizations for
centre subspaces

– consider for example
𝑑𝐱
𝑑𝑡 =

0 1
0 0 𝐱

lim
-→/

𝐰# = 0

lim
-→*/

𝐰& = 0

𝑥"

𝑥$

0
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Hartman–Grobman theorem: introduction

<latexit sha1_base64="6HdZqKNIPmtsfu4wCEhCzYXxBp4="></latexit>

• Now that we have trained our intuition with linear problems, we
can extend our perspective to the nonlinear system

dx

dt
= f(x)

• We can gain insight about stability by considering the
linearization of this system near an equilibrium point x⇤

• The Hartman–Grobman theorem justifies the process of draw-
ing qualitative conclusions about how dynamical systems behave
near to hyperbolic equilibria by examining local linearizations

• Note: nothing is said about non-hyperbolic equilibria
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Local theory for nonlinear systems
<latexit sha1_base64="jki3z3W9t+WwFxoXSwt0B81pe9w="></latexit>

• Given the nonlinear autonomous system

dx

dt
= f(x)

• Linearize about an equilibrium point x⇤ by setting x = x⇤ +w:

dw

dt
= Df(x⇤)w +O(kwk2)

• The linearized system phase space is split into 3 subspaces by a
coordinate transformation based on eigenvectors of Df(x⇤):

<latexit sha1_base64="l0GRX7Mh6fUjKDaQI8471ClIfl8="></latexit>

- Each A is a square real matrix
(stable, unstable, or centre)

- The R’s are vector functions
that quantify the error

<latexit sha1_base64="cRCOzk019vvyGeyWeIG63pyuhno="></latexit>

dzS
dt

= ASzS +RS(z)

dzU
dt

= AUzU +RU(z)

dzC
dt

= ACzS +RC(z)
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The Hartman–Grobman theorem

Theorem: For each hyperbolic equilibrium point, there exists a 
bi-continuous function 𝐻 (a mapping that is continuous and 
whose inverse is also continuous) between an open set 
containing the equilibrium point and an open set containing the 
origin of the linearized model, such that the trajectories are 
mapped exactly and the parameterization of time is preserved

• Near the origin, the stable linear subspace is mapped to a stable 
manifold in the region surrounding the equilibrium point

• Near the origin, the unstable linear subspace is mapped to an 
unstable manifold in the region around the equilibrium point

• Nothing is said about centre subspaces
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Illustration

unstable manifold 
(curve)

stable manifold 
(surface)

stable 
subspace 
(plane)

unstable subspace 
(line)

map 𝐻

inverse 
map 𝐻6%



Consider the autonomous nonlinear system:
𝑑𝑥"
𝑑𝑡

= −𝑥"

𝑑𝑥$
𝑑𝑡

= 𝑥$ + 𝑥"$
𝐰(
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Example of Hartman–Grobman

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

x1

x2 z2

z1

𝐻

𝐻6%

𝐰# E&

E#
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Non-hyperbolic equilibria

• We cannot say very much about non-linear equilibria whose 
linearized models are centres

• We can now ask: does the radius grow, shrink, or stay constant?

• There are some tricks available… 
e.g. a 2D system can be transformed into polar coordinates:

𝑥̇" = 𝑓" 𝑥", 𝑥$
𝑥̇$ = 𝑓$ 𝑥", 𝑥$

Let 𝑥" = 𝑟 cos 𝜃 and 𝑥$ = 𝑟 sin 𝜃, then

𝑟̇ =
𝑥"𝑥̇" + 𝑥$𝑥̇$

𝑟
, 𝜃̇ =

𝑥"𝑥̇$ − 𝑥$𝑥̇"
𝑟$



20

Polar transformation example

• This has a nonlinear centre at the origin since 𝑟 = constant

Consider the system

𝑥̇ = −𝑦 − 𝑥𝑦

𝑦̇ = 𝑥 + 𝑥$

• A move into polar coordinates shows that

𝑟̇ =
𝑥𝑥̇ + 𝑦𝑦̇

𝑟 =
−𝑥 𝑦 + 𝑥𝑦 + 𝑦 𝑥 + 𝑥$

𝑟 = 0

𝜃̇ =
𝑥𝑦̇ − 𝑦𝑥̇
𝑟$ =

𝑥 𝑥 + 𝑥$ + 𝑦 𝑦 + 𝑥𝑦
𝑟$ =

(1 + 𝑥)(𝑥$ + 𝑦$)
𝑟$ = 1 + 𝑥
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Polar transformation example

𝑟̇ = 0

𝜃̇ = 1 + 𝑥
Polar coordinates:

Phase portrait:
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Symmetric systems

• Another idea that can be used to understand non-hyperbolic 
equilibrium points is symmetry

• A 2D nonlinear system with state (𝑥, 𝑦) is symmetric with respect to 
the 𝑥-axis if it is invariant under the transformation

(𝑡, 𝑦) → (−𝑡, −𝑦)

• If: the system is symmetric with respect to either 𝑥 or 𝑦, 

and: the origin is an equilibrium point

then: centres map to centres between the nonlinear system 
and its linear approximation
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Symmetry example

Consider the system

𝑥̇ = 𝑦 − 𝑦, = 𝑓 𝑥, 𝑦

𝑦̇ = −𝑥 − 𝑦$ = 𝑔 𝑥, 𝑦

• The equilibrium point at the origin has Jacobian 0 1
−1 0

and is therefore a linear centre 

• But ⇒ 𝑥 𝑡 , 𝑦 𝑡 = 𝑥 −𝑡 ,−𝑦 −𝑡

𝑑𝑥
𝑑 −𝑡

= 𝑓 𝑥,−𝑦

𝑑 −𝑦
𝑑 −𝑡

= 𝑔 𝑥,−𝑦

• Functions 𝑓 and 𝑔 satisfy: 𝑓 𝑥,−𝑦 = −𝑓 𝑥, 𝑦
𝑔 𝑥,−𝑦 = 𝑔 𝑥, 𝑦

so the nonlinear system also has a centre at the origin
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Symmetry example

𝑥̇ = 𝑦 − 𝑦, = 𝑓 𝑥, 𝑦

𝑦̇ = −𝑥 − 𝑦$ = 𝑔 𝑥, 𝑦
⇒ 𝑥 𝑡 , 𝑦 𝑡 = 𝑥 −𝑡 ,−𝑦 −𝑡

Nonlinear centre at (0,0) Linearised system
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Conservative systems

• If 𝐱 = 𝐱∗ is an isolated equilibrium point and there is a potential 
function 𝑉(𝐱) that has a local minimum or maximum at 𝐱∗, then 
there is a region around that point that contains a closed orbit

• The potential function 𝑉(𝐱) has the property that it does not 
change along the solution trajectories

• If there exists a nonconstant function 𝑉(𝐱) such that 𝑑𝑉/𝑑𝑡 = 0
along solutions of the nonlinear differential equation 𝐱̇ = 𝐟(𝐱), 
the equations are called conservative
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Conservative example

Consider the system
𝑥̇ = 𝑣
𝑣̇ = 𝑓 𝑥

• Thus potential energy + kinetic energy is constant

• Multiply the second equation by the first to form −𝑓 𝑥 𝑥̇ + 𝑣𝑣̇ = 0

• Such systems are called Newtonian dynamical systems 

• Integrate to get − [
1!

1

𝑓 𝑠 𝑑𝑠 +
𝑣$

2 = constant
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A more general approach

• Any system of the form

𝑑𝑥
𝑑𝑡

= 𝑓 𝑥 𝑔" 𝑦

𝑑𝑦
𝑑𝑡

= 𝑓 𝑦 𝑔$ 𝑥

• This can be integrated to obtain the potential function 𝑉(𝑥, 𝑦)

• We can rearrange to

𝑔$ 𝑥
𝑓 𝑥

𝑑𝑥
𝑑𝑡
−
𝑔" 𝑦
𝑓 𝑦

𝑑𝑦
𝑑𝑡

= 0 =
𝑑𝑉
𝑑𝑡
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Final conservative example

• There are equilibrium points at (0,0) and (1,1)

• Jacobian at 0,0 : 1 0
0 −1 Hartman–Grobman says this is 

a nonlinear saddle point 

• Jacobian at (1,1): 0 −1
1 0 is this a nonlinear centre?

• 1*"
1
𝑥̇ − "*2

2
𝑦̇ = 0 ⇒ 𝑥 − ln 𝑥 + 𝑦 − ln 𝑦 = 𝑉 𝑥, 𝑦 = constant

• At (1,1): 𝜕𝑉/𝜕𝑥 = 𝜕𝑉/𝜕𝑦 = 0 and 𝜕$𝑉/𝜕𝑥𝜕𝑦 has eigenvalues > 0
⇒ this is a minimum point of 𝑉(𝑥, 𝑦)
⇒ 1,1 is a nonlinear centre

Consider the system 𝑥̇ = 𝑥 − 𝑥𝑦 = 𝑥 1 − 𝑦
𝑦̇ = −𝑦 + 𝑥𝑦 = 𝑦 𝑥 − 1
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Final conservative example

𝑥̇ = 𝑥 − 𝑥𝑦 = 𝑥 1 − 𝑦
𝑦̇ = −𝑦 + 𝑥𝑦 = 𝑦 𝑥 − 1

Centre

Saddle
point


