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Lecture 4 overview

e This lecture focuses on Lyapunov theory, which can be used to
create tests for stability

e Lyapunov theory generalizes mechanical analyses that
examine how energy is retained or lost in a system over time

e We will develop general principles of the theory — particularly the
concept of a Lyapunov function — and use it to create a

method to prove asymptotic stability

e The method will be applied to Hamiltonian systems
I.e. mechanical systems that conserve total energy

e The related idea of a gradient system will be discussed



Lyapunov analysis: flow across a boundary

e We can get information about stability by thinking of how flows
cross the boundary of a region U in phase space

boundary dU

region U

N

e Suppose we have a region U around an equilibrium point; if the
vector field representing the phase flow at the boundary dU
always points inward or is tangential, the flow can’t escape

e We imagine this boundary to be drawn by a scalar function V,
such that V(x) = C = constant



Lyapunov analysis: nested boundaries

e Now imagine that we have a nested set of boundary surfaces,
described by ever smaller values of C in V(x) = C

Cr+1 € Cy

e VV is a vector normal to the surface

o |If all the flow points inward, then V = VV - x < 0 on the boundary
- but x = f(X), so we can instead write V =VV - f < 0

_ and if V < 0 for all x # x*, then V converges to a minimum point



Lyapunov's theorem

e Let x* be an equilibrium point of x = f(x) i.e. f(x*) =0
Let D be an open set surrounding x* and let V' : D — R be a
continuously differentiable function such that

1. V(x*) =0and V(x) > 0 for all x # x*
2. V(x*)=VV -f(x) <0

then the equilibrium point x* is stable

e x* is asymptotically stable if we also have

3. V(x) < 0 for all x # x*

e x* is globally asymptotically stable if we further have

4. lim V(x)=o00and D =R"

[I¢[| =00

e V(x) is called a Lyapunov function



lllustration

V(%)

The Lyapunov function V(X) decreases along solution trajectories



Example 1

Consider the nonlinear autonomous system

T =1
= —x + ex’y

e Single equilibrium point at (z*,y*) = (0,0), with Jacobian

eigenvalues are A = +7 (non-hyperbolic
DE(0,0) = [_01 (1)] o 8 Jj (non-hyp

so Hartman-Grobman doesn’t apply)

e Let the Lyapunov function be V(z,y) = %(902 +y?)

dV
E:VV-xzxj;er?J:xy—warstyQ=€£L’2y2

so equilibrium (0,0) is stable if ¢ <0



Example 2

Consider another autonomous system

T1 = —2x9 + ToT3
Ty = X1 — X123

.Ci?g — IT1I9
e Equilibrium point (z1,x2,23) = (0,0,0) is a linear centre

e Define a Lyapunov function V(x) = c12% + cox3 + c323

=NV Vg Y
—851311 (9:1322 85633

= 2((32 — 201)561332 + 2(61 — Co + (33)5813325133

e Choose ¢y = 2¢1 = ¢, 03201:%candc>0

then V' > 0 whenever x # 0 and V =0 so x = 0 is stable



Example 3: Jet engine

A simple model of a jet engine with a controller is

i1 = —xo + 1.52% — 0.5

5.62 — 3$1 — T2

e Equilibrium at (0,0) has Df(0,0) = [g :ﬂ )\ — —1:|:§\/ﬁ

e The linearized system has a stable focus, so Hartman—Grobman
says the system is stable near the origin (but not how near)

e Lyapunov functions can extend this result to prove global stability

e The function is quartic (plot on next slide):

2 p 3 4
V(x) = c1x] + cox5 + c3x1T2 + cax] + . . . + Ccrs



Example 3: Jet engine

Solution trajectories in the phase plane

Dotted lines are the contours of the Lyapunov function



Vector fields possessing an integral

Lyapunov functions can be cast in more intuitive terms by think-
ing of a physical system described by a potential

The solution trajectories (or flow) of x = f(x) is a vector field.
This vector field is said to have an integral [(x) if

Z—xk—VI x=VI - f=0
&Uk

Here VI is the gradient vector of [

The scalar function I(x) defines level sets that contain the flow
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Example: Simple pendulum

. do
Governing system: — =p
dt
d
d_]t? = —% sin 6
. 1, g
The total stored energy is conserved, FJ = §p ~7 cos 6
. . . dE dp g . . db
Th tent - =p— + Zsinf— =0
IS is consistent since o =P -+ 5 sind—
Level sets of energy  sf ~ _——_ " _—— T _——=_
] :__/\/_\_/_\_:
in state space: 2
1 ]
o}
_2;Mé
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Example: Undamped Duffing oscillator

e Governing system (for v =0): &=y
=1z —x°

Integral I(x,y) satisfies dl*_ 0l du + ol dy

o | —_— =

© Y dt Ox dt Oy dt
o0l ol

(xr —2°) =0

e A solution is I(z,y) = z2*(1 — $2?) + 2y

o Level sets of I(z):

-0.5}

-1.0L




Hamiltonian systems

e Hamilton’s equations provide an alternative way of phrasing
Newton's laws — useful for conservative many-body systems

e The Hamiltonian function H casts the total energy (kinetic +
potential) of in terms of particle positions q and momenta p

e Given H(q,p), a Hamiltonian system is defined as

OH

p . f(p,q Where f%(pa q) - aqz
q=g(p q) | _9H
g;(p,q) o

e Here p and q are vectors with equal numbers n of real entries
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Some facts about Hamiltonian systems

e If an equilibrium point (p*,q*) is a (possibly local) minimum
point of H(p,q), then it is a stable equilibrium point

e A Newtonian system of the form
d*x
dt?

can be written as a Hamiltonian system by defining the Hamilto-
nian function as potential energy + kinetic energy:

= f(=)

( OH ., N dx

,UQ X _— = -
H(:c,v):?—/ flx)dr = A« (‘?[T—il g;“:
N Ox dt

f(x)
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Gradient systems

Definition: A system x = f(x) is referred to as a gradient system
if there is a twice differentiable function V' (x) such that

dz; oV oV

Jt :_8—%- or fi(x):_(‘?—azi

Generally, equilibrium points are the critical points of V/

Away from equilibria, solution trajectories are orthogonal to the
level sets of V' (i.e. contours or surfaces of constant V)

If x* is a strict local minimum of V', then V(x) — V(x*) is a
Lyapunov function showing that x* is asymptotically stable

If x* is a strict local maximum of V', then x* is unstable.
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Example gradient system

The system Tt = —4x(xr —1)(x — 0.5)
y=—2y

has potential  V(z,y) = /490(:1: —1)(x—1/2)dx + /Zy dy

=2 (z —1)° +y°
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Connecting gradient and Hamiltonian systems

e Consider the 2nd order Hamiltonian system

oH
dy

: OH
Yy = g(xay) — —%

:'U:f(a:,y)z

e The solution flows of this system are orthogonal to the solution
flows of the 2nd order gradient system

: OH
T =g(x,y) = oz

0

e These two systems have the same equilibria; centres map to nodes
(real A with same sign); saddles map to saddles, and foci of the

flows map to foci
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