Lecture 4: Lyapunov analysis

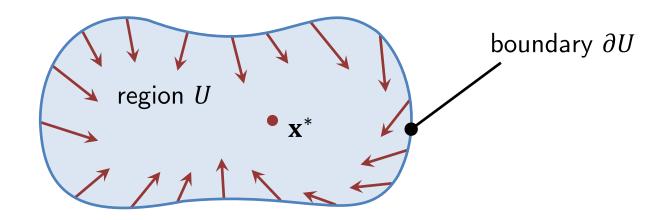
Mark Cannon mark.cannon@eng.ox.ac.uk

Lecture 4 overview

- This lecture focuses on Lyapunov theory, which can be used to create tests for stability
- Lyapunov theory generalizes mechanical analyses that examine how energy is retained or lost in a system over time
- We will develop general principles of the theory particularly the concept of a Lyapunov function – and use it to create a method to prove asymptotic stability
- The method will be applied to **Hamiltonian systems** i.e. mechanical systems that conserve total energy
- The related idea of a **gradient system** will be discussed

Lyapunov analysis: flow across a boundary

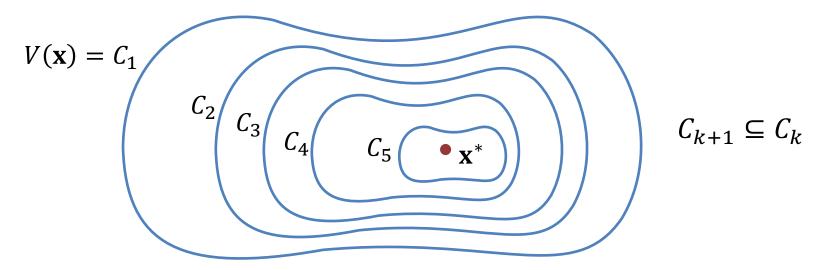
• We can get information about stability by thinking of how flows cross the boundary of a region U in phase space



- Suppose we have a region U around an equilibrium point; if the vector field representing the phase flow at the boundary ∂U always points inward or is tangential, the flow can't escape
- We imagine this boundary to be drawn by a scalar function V, such that $V(\mathbf{x}) = C = \text{constant}$

Lyapunov analysis: nested boundaries

• Now imagine that we have a nested set of boundary surfaces, described by ever smaller values of C in $V(\mathbf{x}) = C$



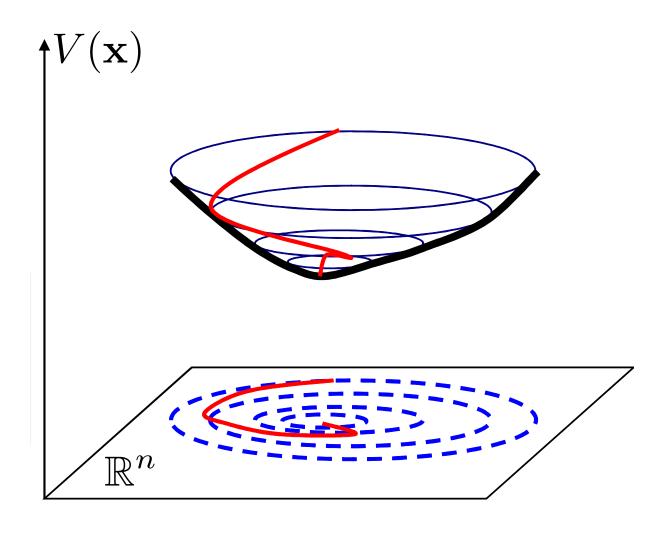
- \bullet ∇V is a vector normal to the surface
- If all the flow points inward, then $\dot{V} = \nabla V \cdot \dot{\mathbf{x}} \leq 0$ on the boundary
 - but $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$, so we can instead write $\dot{V} = \nabla V \cdot \mathbf{f} \leq 0$
 - and if $\dot{V} < 0$ for all $\mathbf{x} \neq \mathbf{x}^*$, then V converges to a minimum point

Lyapunov's theorem

- Let \mathbf{x}^* be an equilibrium point of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ i.e. $\mathbf{f}(\mathbf{x}^*) = 0$ Let D be an open set surrounding \mathbf{x}^* and let $V:D \to \mathbb{R}$ be a continuously differentiable function such that
 - 1. $V(\mathbf{x}^*) = 0$ and $V(\mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{x}^*$
 - 2. $\dot{V}(\mathbf{x}^*) = \nabla V \cdot \mathbf{f}(\mathbf{x}) \le 0$

then the equilibrium point x^* is **stable**

- x* is asymptotically stable if we also have
 - 3. $\dot{V}(\mathbf{x}) < 0$ for all $\mathbf{x} \neq \mathbf{x}^*$
- x* is globally asymptotically stable if we further have
 - 4. $\lim_{\|\mathbf{x}\| \to \infty} V(\mathbf{x}) = \infty$ and $D = \mathbb{R}^n$
- $V(\mathbf{x})$ is called a **Lyapunov** function



The Lyapunov function $V(\mathbf{x})$ decreases along solution trajectories

Example 1

Consider the nonlinear autonomous system

$$\dot{x} = y$$

$$\dot{y} = -x + \varepsilon x^2 y$$

• Single equilibrium point at $(x^*, y^*) = (0, 0)$, with Jacobian

$$D\mathbf{f}(0,0) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \leftarrow \begin{array}{l} \text{eigenvalues are } \lambda = \pm j \text{ (non-hyperbolic} \\ \text{so Hartman-Grobman doesn't apply)} \end{array}$$

• Let the Lyapunov function be $V(x,y) = \frac{1}{2}(x^2 + y^2)$

$$\frac{dV}{dt} = \nabla V \cdot \dot{\mathbf{x}} = x\dot{x} + y\dot{y} = xy - xy + \varepsilon x^2 y^2 = \varepsilon x^2 y^2$$

so equilibrium (0,0) is **stable** if $\varepsilon \leq 0$

Example 2

Consider another autonomous system

$$\dot{x}_1 = -2x_2 + x_2x_3$$

$$\dot{x}_2 = x_1 - x_1x_3$$

$$\dot{x}_3 = x_1x_2$$

- Equilibrium point $(x_1, x_2, x_3) = (0, 0, 0)$ is a linear centre
- Define a Lyapunov function $V(\mathbf{x}) = c_1 x_1^2 + c_2 x_2^2 + c_3 x_3^2$

$$\dot{V} = \frac{\partial V}{\partial x_1} \dot{x}_1 + \frac{\partial V}{\partial x_2} \dot{x}_2 + \frac{\partial V}{\partial x_3} \dot{x}_3$$

$$= 2(c_2 - 2c_1)x_1x_2 + 2(c_1 - c_2 + c_3)x_1x_2x_3$$

• Choose $c_2=2c_1=c$, $c_3=c_1=\frac{1}{2}c$ and c>0 then V>0 whenever $\mathbf{x}\neq 0$ and $\dot{V}=0$ so $\mathbf{x}=0$ is **stable**

Example 3: Jet engine

A simple model of a jet engine with a controller is

$$\dot{x}_1 = -x_2 + 1.5x_1^2 - 0.5x_1^3$$

$$\dot{x}_2 = 3x_1 - x_2$$

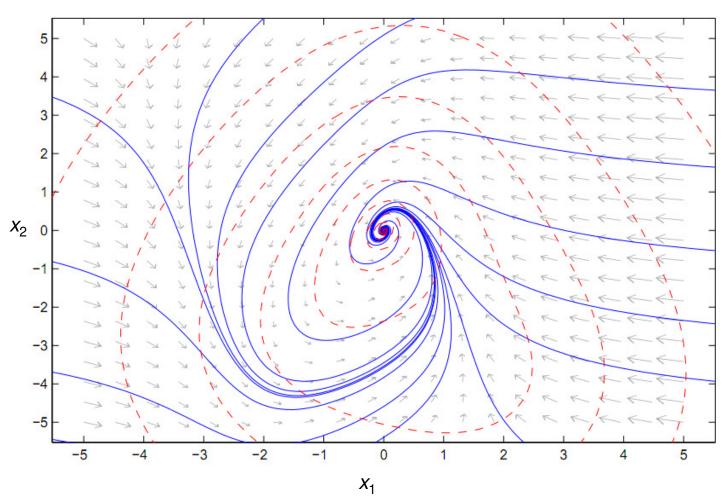
- Equilibrium at (0,0) has $D\mathbf{f}(0,0)=\begin{vmatrix} 0 & -1 \\ 3 & -1 \end{vmatrix} \ \Rightarrow \ \lambda=\frac{-1\pm j\sqrt{11}}{2}$
- The linearized system has a stable focus, so Hartman–Grobman says the system is stable near the origin (but not how near)
- Lyapunov functions can extend this result to prove global stability
- The function is quartic (plot on next slide):

$$V(\mathbf{x}) = c_1 x_1^2 + c_2 x_2^2 + c_3 x_1 x_2 + c_4 x_1^3 + \ldots + c_k x_2^4$$

9

Example 3: Jet engine

Solution trajectories in the phase plane



Dotted lines are the contours of the Lyapunov function

Vector fields possessing an integral

- Lyapunov functions can be cast in more intuitive terms by thinking of a physical system described by a potential
- The solution trajectories (or flow) of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ is a vector field. This vector field is said to have an **integral** $I(\mathbf{x})$ if

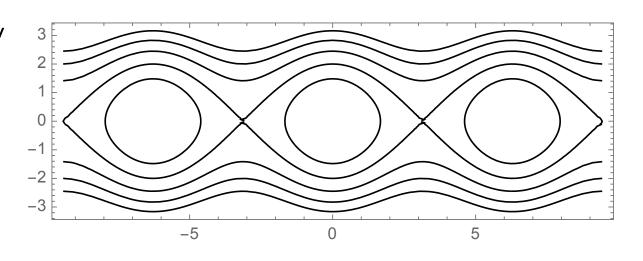
$$\frac{d}{dt}I(\mathbf{x}) = \sum_{k} \frac{\partial I}{\partial x_k} \dot{x}_k = \nabla I \cdot \dot{\mathbf{x}} = \nabla I \cdot \mathbf{f} = 0$$

- Here ∇I is the **gradient vector** of I
- The scalar function $I(\mathbf{x})$ defines **level sets** that contain the flow

Example: Simple pendulum

• Governing system: $\frac{d\theta}{dt} = p$ $\frac{dp}{dt} = -\frac{g}{\ell}\sin\theta$

- The total stored energy is conserved, $E = \frac{1}{2}p^2 \frac{g}{\ell}\cos\theta$
- This is consistent since $\frac{dE}{dt} = p\frac{dp}{dt} + \frac{g}{\ell}\sin\theta\frac{d\theta}{dt} = 0$
- Level sets of energy in state space:



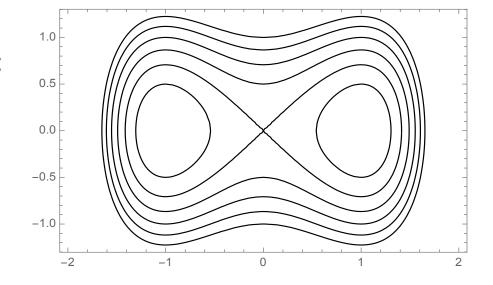
Example: Undamped Duffing oscillator

• Governing system (for $\gamma = 0$): $\dot{x} = y$ $\dot{y} = x - x^3$

• Integral I(x,y) satisfies

$$\frac{dI}{dt} = \frac{\partial I}{\partial x} \frac{dx}{dt} + \frac{\partial I}{\partial y} \frac{dy}{dt}$$
$$= \frac{\partial I}{\partial x} y + \frac{\partial I}{\partial y} (x - x^3) = 0$$

- A solution is $I(x,y) = \frac{1}{2}x^2(1 \frac{1}{2}x^2) + \frac{1}{2}y^2$
- Level sets of I(x):



Hamiltonian systems

- Hamilton's equations provide an alternative way of phrasing Newton's laws – useful for conservative many-body systems
- The **Hamiltonian function** H casts the total energy (kinetic + potential) of in terms of particle positions \mathbf{q} and momenta \mathbf{p}
- Given $H(\mathbf{q}, \mathbf{p})$, a **Hamiltonian system** is defined as

$$\dot{\mathbf{p}} = \mathbf{f}(\mathbf{p}, \mathbf{q})$$
 where $f_i(\mathbf{p}, \mathbf{q}) = -\frac{\partial H}{\partial q_i}$ $g_j(\mathbf{p}, \mathbf{q}) = \frac{\partial H}{\partial p_j}$

ullet Here ${f p}$ and ${f q}$ are vectors with equal numbers n of real entries

Some facts about Hamiltonian systems

• If an equilibrium point $(\mathbf{p}^*, \mathbf{q}^*)$ is a (possibly local) minimum point of $H(\mathbf{p}, \mathbf{q})$, then it is a **stable** equilibrium point

A Newtonian system of the form

$$\frac{d^2x}{dt^2} = f(x)$$

can be written as a Hamiltonian system by defining the Hamiltonian function as potential energy + kinetic energy:

$$H(x,v) = \frac{v^2}{2} - \int_{x_0}^x f(x) \, dx \implies \begin{cases} \frac{\partial H}{\partial v} = v & \Longrightarrow & \frac{dx}{dt} = v \\ -\frac{\partial H}{\partial x} = f(x) & \Longrightarrow & \frac{dv}{dt} = f(x) \end{cases}$$

Gradient systems

Definition: A system $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ is referred to as a **gradient system** if there is a twice differentiable function $V(\mathbf{x})$ such that

$$\frac{dx_i}{dt} = -\frac{\partial V}{\partial x_i} \quad \text{or} \quad f_i(\mathbf{x}) = -\frac{\partial V}{\partial x_i}$$

- ullet Generally, equilibrium points are the **critical points** of V
- Away from equilibria, solution trajectories are orthogonal to the level sets of V (i.e. contours or surfaces of constant V)
- If \mathbf{x}^* is a strict local **minimum** of V, then $V(\mathbf{x}) V(\mathbf{x}^*)$ is a Lyapunov function showing that \mathbf{x}^* is **asymptotically stable**
- If x^* is a strict local **maximum** of V, then x^* is **unstable**.

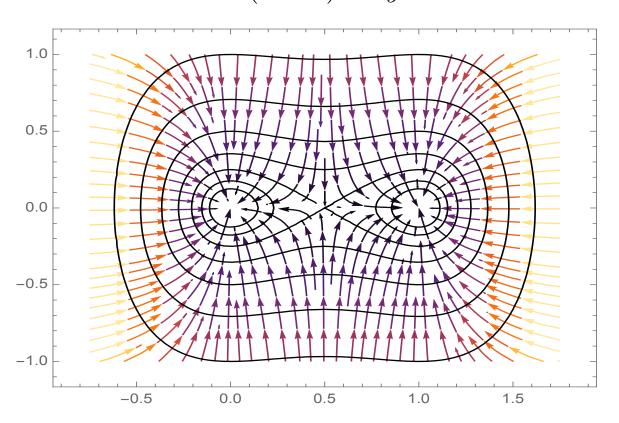
Example gradient system

The system
$$\dot{x} = -4x(x-1)(x-0.5)$$

$$\dot{y} = -2y$$

has potential

$$V(x,y) = \int 4x(x-1)(x-1/2) dx + \int 2y dy$$
$$= x^2(x-1)^2 + y^2$$



Connecting gradient and Hamiltonian systems

Consider the 2nd order Hamiltonian system

$$\dot{x} = f(x, y) = \frac{\partial H}{\partial y}$$
 $\dot{y} = g(x, y) = -\frac{\partial H}{\partial x}$

 The solution flows of this system are orthogonal to the solution flows of the 2nd order gradient system

$$\dot{x} = g(x, y) = -\frac{\partial H}{\partial x}$$

$$\dot{y} = -f(x, y) = -\frac{\partial H}{\partial y}$$

• These two systems have the same equilibria; centres map to nodes (real λ with same sign); saddles map to saddles, and foci of the flows map to foci