Lecture 5: Asymptotic behaviour

Mark Cannon mark.cannon@eng.ox.ac.uk

Lecture 5 overview

- We now consider how trajectories behave at the 'beginning' and 'end' of time – their asymptotic behaviour
- To formalize this discussion we will introduce key concepts relating to flow trajectories:
 limit points, limit sets, and various types of orbit
- We will also characterize domains in phase space through the concepts of invariance, attractors, and basins of attraction
- Finally we will characterize various types of attractors with the Poincaré-Bendixson theorem, which fully characterizes positively invariant regions of the phase plane

Limit points

Global properties of trajectories:

• Suppose $\phi(t, \mathbf{x}_0)$ is the flow of $\mathbf{f}(\mathbf{x})$ with $\phi(0, \mathbf{x}_0) = \mathbf{x}_0$ (i.e. $\mathbf{x}(t) = \phi(t, \mathbf{x}_0)$ is a solution of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with $\phi(0, \mathbf{x}_0) = \mathbf{x}_0$)

• This solution defines a path or trajectory in some set $D \subseteq \mathbb{R}^n$ containing \mathbf{x}_0

$$\Gamma = \{ \mathbf{x} \in D : \mathbf{x} = \phi(t, \mathbf{x}_0), t \in \mathbb{R} \}$$

• We want to determine the asymptotic behaviour of this solution – the α and ω **limit points** of the trajectory

ω limit points

Definition: A point $\mathbf{p} \in D$ is called an ω **limit point** of the trajectory $\phi(t, \mathbf{x})$ if there exists a sequence of times $\{t_0, t_1, \ldots\}$, with $t_i \to \infty$ as $i \to \infty$, such that

$$\lim_{i \to \infty} \phi(t_i, \mathbf{x}) = \mathbf{p}$$

this point is denoted $\omega(\mathbf{x})$

Note that we may need to choose the times $\{t_i, i = 0, 1, \ldots\}$ carefully to define a limit point

e.g. for any $x \in \mathbb{R}$, $\phi(t,x) = e^{-2t}x + \sin(t)$ has the limit points

$$\omega(x) = \begin{cases} 0 & \text{if } t_i = i\pi \\ 1 & \text{if } t_i = (i + \frac{1}{2})\pi \end{cases}$$

α limit points

Definition: A point $\mathbf{p} \in D$ is called an α **limit point** of the trajectory $\phi(t, \mathbf{x})$ if there exists a sequence of times $\{t_0, t_1, \ldots\}$, with $t_i \to -\infty$ as $i \to \infty$, such that

$$\lim_{i \to \infty} \phi(t_i, \mathbf{x}) = \mathbf{p}$$

this point is denoted $\alpha(\mathbf{x})$

Example: a saddle point equilibrium is an ω limit for any point on the stable manifold, and an α limit for any point on the unstable manifold

Limit sets

A trajectory Γ may have multiple α and/or ω limit points

Definition: The α limit set and ω limit set, denoted $\alpha(\Gamma)$ and $\omega(\Gamma)$, are the sets of all α limit points and ω limit points for the trajectory Γ

Note that:

- $\alpha(\Gamma)$ is the set of points from which the trajectory Γ originates (in the limit as $t \to -\infty$) and $\omega(\Gamma)$ is the set of points to which it tends (in the limit as $t \to \infty$)
- The set of all limit points is called the **limit set** of Γ

Limit sets

Examples

A sequence of points leading to an ω limit set $\omega(\Gamma)$ consisting of an isolated point **p** A sequence of points converging to an ω limit point ${\bf p}$ when the limit set $\omega(\Gamma)$ is not an isolated point

Equilibrium points

• An equilibrium point \mathbf{x}^* is its own α and ω limit point

Conversely if a trajectory has a unique ω limit point \mathbf{x}^* , then \mathbf{x}^* is an equilibrium point

• Not all ω limit points are equilibrium points – e.g. an ω limit point \mathbf{p} on an orbiting trajectory $\omega(\Gamma)$

If a point **p** is a limit point and $\dot{\mathbf{p}} \neq 0$, the trajectory is a closed orbit

For closed orbits:

- the sequence of points must be picked carefully
- there are infinitely many points in the ω limit set

Invariance

Definition: Let $\phi(t, \mathbf{x})$ be the flow of $\mathbf{f}(\mathbf{x})$ on a domain D; then a set $S \subset D$ is called **positively invariant** if

$$\phi(t, \mathbf{x}) \in S$$
 for all $\mathbf{x} \in S$ and all $t \ge 0$

• All points in S stay in S under the action of the flow – the solution cannot 'escape' from S

(we saw an example of this in the case of the stable and unstable invariant manifolds in earlier lectures)

- If a region M is positively invariant, closed and bounded, then the ω limit set is non-empty (all flows have to go somewhere!)
- A limit set is necessarily positively invariant

Attraction

- A **neighbourhood** is a set of points surrounding a given point \mathbf{x} such that the distance from \mathbf{x} to any point in the set is less than some positive number ε
- An invariant set $A \subset D$ is called **attracting** if:
 - 1. There is some neighbourhood U of A that is positively invariant
 - 2. All trajectories starting in U converge to A as $t \to \infty$
- The neighbourhood U so defined is a trapping region of A

Attractor

 An attractor is an invariant attracting set (e.g. a limit cycle or equilibrium point) such that no subset of the invariant set is itself an invariant attracting set

• A stable node or focus is an attractor, because it is the ω -limit set of all trajectories that pass through points in a neighborhood of the equilibrium point

 A saddle point is not an attractor, because trajectories with unstable components leave the saddle point's neighborhood

Example

Consider the dynamical system
$$\dot{x} = -y + x(1-x^2-y^2)$$

$$\dot{y} = x + y(1-x^2-y^2)$$

Transform to polar coordinates:
$$\dot{r} = r(1-r^2)$$
 $\dot{\theta} = 1$

- r=0 is an unstable hyperbolic equilibrium point r=1 is a limit cycle since $\dot{r}=0$
- to evaluate the stability of the limit cycle, set $r = 1 + \delta r$:

$$\dot{r} = r(1 - r^2) \Rightarrow \frac{d}{dt}(1 + \delta r) = (1 + \delta r)[1 - (1 + \delta r)^2]$$
$$\Rightarrow \frac{d}{dt}(\delta r) = -2\delta r + O(\delta r^2)$$

so the limit cycle is stable

Example

Solution trajectories:

$$r(1-r^2) < 0$$
 if $r > 1$
$$r(1-r^2) = 0$$
 if $r \in \{0.1\}$
$$r(1-r^2) > 0$$
 if $0 < r < 1$

- r=1 is the ω limit set for all points in the plane except the origin (which is its own ω limit set)
- the trapping region is the whole plane, excluding the origin

Basin of attraction

The **domain** (or **basin**) **of attraction** of an attracting set A is the union of all trajectories that form a trapping region of A

The domain of attraction for the leftmost equilibrium point (-1,0) of the Duffing oscillator

LaSalle's invariance principle

Let $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^n$ and let V be a continuously differentiable function such that

- (a). the set $S_c = \{\mathbf{x} : V(\mathbf{x}) \leq c\}$ is bounded for some c
- (b). $V(\mathbf{x}) \leq 0$ whenever $\mathbf{x} \in S_c$

then S_c is a positively invariant set

LaSalle's Principle: Define the following two sets

$$E = \{ \mathbf{x} \in S_c : \dot{V}(\mathbf{x}) = 0 \}$$

$$M = \{ \text{union of all positively invariant sets in } E \}$$

then every trajectory starting in S_c tends to M as $t \to \infty$

LaSalle's principle: application to Duffing oscillator

Governing system:
$$\dot{x} = y$$

 $\dot{y} = x - x^3 - \gamma y$, $\gamma > 0$

• Let $V(x,y) = \frac{1}{2}y^2 - \frac{1}{2}x^2 + \frac{1}{4}x^4$ then $\dot{V}(x,y) = -\gamma y^2$

- Let $S_c = \{(x, y) : V(x, y) \le c\}$ for any chosen c > 0, then S_c is positively invariant since $\dot{V} \le 0$
- Here $E = \{(x, y) : y = 0\}$ and $M = \{(-1,0), (0,0), (1,0)\}$
- LaSalle's principle says all trajectories in S_c ultimately converge to M, and hence to one of the three equilibria

LaSalle and Duffing: visualization

Phase plane for $\gamma = 0.5$

Characterization of orbits

We aim to classify the types of attractors in the **phase plane**. First some definitions:

- A homoclinic orbit is a trajectory that joins a saddle point equilibrium to itself – it moves away from the equilibrium on an unstable manifold and returns on a stable manifold
- A heteroclinic orbit is a trajectory that joins two distinct equilibrium points
- A separatrix cycle partitions the phase plane into two regions with different characteristics – there are many ways to construct separatrix cycles

Homoclinic orbit example

Consider the Hamiltonian system

$$\dot{x} = y$$

$$\dot{y} = x + x^{2}$$

$$H(x, y) = \frac{1}{2}y^{2} - \frac{1}{2}x^{2} - \frac{1}{3}x^{3}$$

 Solution trajectories are the level sets of the Hamiltonian function (constant energy curves in phase space):

$$\Gamma_c = \{(x, y): y^2 - x^2 - \frac{2}{3}x^3 = c\}$$

• For c = 0, $\Gamma_0 = \{(x, y): y^2 = x^2 + \frac{2}{3}x^3\}$ is a trajectory that passes through a saddle point at the origin:

$$D\mathbf{f}(0,0) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow \lambda = \{1, -1\}$$

Homoclinic orbit visualization

Heteroclinic orbit example

The phase plane of the undamped pendulum has heteroclinic orbits

There are saddle-point equilibria whenever the pendulum points upward $(\theta = \pi)$; a heteroclinic orbit connects these

 The two heteroclinic cycles in the upper and lower halfplane define a heteroclinic separatrix cycle (in red) Phase portrait of $\dot{\theta} = \omega$ $\dot{\omega} = -\sin\theta$

Compound separatrix cycles

 A compound separatrix cycle is an orbit that surrounds multiple equilibrium points with compatibly orientated separatrices

Note that everywhere such a cycle crosses itself must also be an equilibrium point

Poincaré-Bendixson theorem in the plane

Theorem: Let M be a positively invariant region of a system with a 2-d phase space containing only a finite number of equilibria. Let $\mathbf{x} \in M$ and consider $\omega(\mathbf{x})$. One of the following possibilities must hold:

- i. $\omega(\mathbf{x})$ is an equilibrium
- ii. $\omega(\mathbf{x})$ is a closed orbit
- iii. $\omega(\mathbf{x})$ consists of a finite number of equilibria $\mathbf{x}_1^*,\ldots,\mathbf{x}_n^*$ and orbits Γ with $\alpha(\Gamma)=\mathbf{x}_i^*$ and $\omega(\Gamma)=\mathbf{x}_i^*$

Case iii defines a set of heteroclinic orbits (e.g. undamped pendulum)

Observations:

- ullet If all the equilibria in M are stable, then there can be only one
- If there are no stable equilibria in M, then M must contain a closed orbit (stable limit cycle)

Poincaré-Bendixson and the Duffing oscillator

Back to the Duffing Oscillator:
$$\dot{x}=y$$

$$\dot{y}=x-x^3-\gamma y, \qquad \gamma>0$$

- Level sets of $V(x,y) = \frac{1}{2}y^2 \frac{1}{2}x^2 + \frac{1}{4}x^4$ are positively invariant since $\dot{V}(x,y) = -\gamma y^2$
- Three equilibria lie in $S_c = \{(x,y) : V(x,y) \le c\}$ for c > 0:
 - an unstable equilibrium (0,0)
 - two stable equilibria (-1,0), (1,0)
- For c = 0, S_0 splits into two sets that share a common point at (0,0)
- Therefore all trajectories leaving the unstable equilibrium point must end up at one of the stable equilibria

Two types of behaviour for the Duffing oscillator

Additional Poincaré-Bendixson example

Consider the autonomous system:

$$\dot{x}_1 = x_1 + x_2 - x_1(x_1^2 + x_2^2)$$

$$\dot{x}_2 = -x_1 + x_2 - x_2(x_1^2 + x_2^2)$$

• Linearizing around the **only** equilibrium point (at (0,0)) gives Jacobian

$$D\mathbf{f}(0,0) = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \Rightarrow \lambda = 1 \pm j \text{ (an unstable spiral)}$$

• If
$$V = x_1^2 + x_2^2$$
, then $\dot{V} = 2x_1\dot{x}_1 + 2x_2\dot{x}_2 = 2x_1^2 + 2x_2^2 - 2(x_1^2 + x_2^2)^2$

$$\Rightarrow \quad \dot{V} = 2V(1 - V)$$

$$\Rightarrow \quad \dot{V} \le 0 \text{ whenever } V \ge 1$$
so $S_c = \{(x,y) : V \le c\}$ is invariant for $c \ge 1$

• Since there is only an unstable equilibrium point inside S_1 , Poincaré-Bendixson implies that S_1 must contain a stable limit cycle

Visualizing the additional example

The phase portrait has an unstable spiral within a stable limit cycle

