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L ecture 5 overview

e We now consider how trajectories behave at the ‘beginning’ and
‘end’ of time — their asymptotic behaviour

e To formalize this discussion we will introduce key concepts relating
to flow trajectories:
limit points, limit sets, and various types of orbit

e We will also characterize domains in phase space through the
concepts of invariance, attractors, and basins of attraction

e Finally we will characterize various types of attractors with
the Poincaré-Bendixson theorem, which fully characterizes

positively invariant regions of the phase plane



Limit points

Global properties of trajectories:

e Suppose ¢(t,xy) is the flow of f(x) with ¢(0,x,) = X,
(i.e. x(t) = ¢(¢t,xp) is a solution of x = f(x) with ¢(0,x,) = X;)

e This solution defines a path or trajectory in some set D € R"
containing X
={xeD:x=¢(txy),t R}

e We want to determine the asymptotic behaviour of this solution
— the a and w limit points of the trajectory



w limit points

Definition: A point p € D is called an w limit point of the trajectory
¢(t,x) if there exists a sequence of times {tg,%1,...}, with t; — oo as

1 — 00, such that
lim ¢(t;,x) =p

21— 00

this point is denoted w(x)

Note that we may need to choose the times {t;, ¢ = 0,1,...} carefully
to define a limit point

e.g. forany z € R, ¢(t,x) = e ?'x + sin(t) has the limit points

1 ift; =(i+ 3)m



a limit points

Definition: A point p € D is called an « limit point of the trajectory
¢(t,x) if there exists a sequence of times {tg,t1,...}, with ¢; - —o0
as 7 — 00, such that

lim ¢(t;,x) =p

21— 00

this point is denoted a(x)

Example: a saddle point equilibrium is an w limit for any point on the
stable manifold, and an « limit for any point on the unstable manifold
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Limit sets

A trajectory I' may have multiple a and/or w limit points

Definition: The « limit set and w limit set, denoted «(I") and w(I'),
are the sets of all « limit points and w limit points for the trajectory I'
Note that:

e «(I') is the set of points from which the trajectory I" originates

(in the limit as t — —o0) and w(I') is the set of points to which
it tends (in the limit as ¢t — o0)

e The set of all limit points is called the limit set of I'



Limit sets

Examples
# v
w(T)
A sequence of points leading to A sequence of points converging
an w limit set w(I") consisting of to an w limit point p when the
an isolated point p limit set w(I") is not an isolated

point



Equilibrium points

An equilibrium point X* is its own a and w limit point

Conversely if a trajectory has a unique w limit point x*, then X" is
an equilibrium point

Not all w limit points are equilibrium
points — e.g. an w limit point p on Q />
an orbiting trajectory w(T) w(T)

If a point p is a limit point and p # 0, the trajectory is a closed orbit

For closed orbits:
— the sequence of points must be picked carefully
— there are infinitely many points in the w limit set



Invariance

Definition: Let ¢(¢,x) be the flow of f(x) on a domain D; then a set
S C D is called positively invariant if

¢(t,x) €S forallxe Sandallt>0

e All pointsin S stay in .S under the action of the flow — the solution
cannot ‘escape’ from S

(we saw an example of this in the case of the stable and unstable
invariant manifolds in earlier lectures)

e If a region M is positively invariant, closed and bounded, then
the w limit set is non-empty (all flows have to go somewhere!)

e A limit set is necessarily positively invariant



Attraction

A neighbourhood is a set of points surrounding a given point x
such that the distance from x to any point in the set is less than
some positive number &

An invariant set A € D is called attracting if:
1. There is some neighbourhood U of A that is positively invariant
2. All trajectories starting in U converge to A as t — oo

The neighbourhood U so defined is a trapping region of A

@uﬂu |
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Attractor

e An attractor is an invariant attracting set (e.g. a limit cycle or

equilibrium point) such that no subset of the invariant set is
itself an invariant attracting set

e A stable node or focus is an attractor, because it is the w-limit set

of all trajectories that pass through points in a neighborhood of
the equilibrium point

YoM D
A

A saddle point is not an attractor, because trajectories with
unstable components leave the saddle point’'s neighborhood

11



Example

Consider the dynamical system % = —y + x(1 — x? — y?)
y=x+y(1-x*-y*)
Transform to polar coordinates: 7 =7r(1—1r?)
6 =1
e 1 =0 is an unstable hyperbolic equilibrium point

r =1 is a limit cycle since r = 0

e to evaluate the stability of the limit cycle, set r = 1 + 67
d
r=r(1-712%) = E(l +6r) = (1 +6r)[1 — (1 + 61)?]

d
= E(@r) = —26r + 0(67%)

so the limit cycle is stable
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Example

Solution trajectories:
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r(l—r3)<0 ifr>1
r(1—r%?)=0 ifr€{0.1}
r(l—-r%)>0 if0<r<1

- r=1Is the w limit set for

all points in the plane
except the origin (which is
its own w limit set)

- the trapping region is the

whole plane, excluding the
origin
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Basin of attraction

The domain (or basin) of attraction of an attracting set A is the
union of all trajectories that form a trapping region of A
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The domain of attraction for the leftmost equilibrium point (—1,0)
of the Duffing oscillator
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LaSalle's invariance principle

Let x = f(x), x € R" and let V' be a continuously differentiable
function such that

(a). theset S, = {x:V(x) < c} is bounded for some c

(b). V(x) <0 whenever x € S,

then S. is a positively invariant set

LaSalle’s Principle: Define the following two sets

E={xeS.:V(x)=0}

M = {union of all positively invariant sets in E'}

then every trajectory starting in S. tends to M as t — oo
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LaSalle’s principle: application to Duffing oscillator

Governing system: X=y

y=x—x>—yy, y >0

o Let V(xy) = y*—1ix*+ x*
then  V(x,y) = —yy?

o LetS.={(x,y): V(x,y) <c} for any chosen ¢ > 0,
then S, is positively invariant since V < 0

e Here E={(x,y):y=0}and M = {(—1,0),(0,0),(1,0)}

e LaSalle's principle says all trajectories in S, ultimately converge
to M, and hence to one of the three equilibria
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LaSalle and Duffing: visualization

Phase plane for y = 0.5
Sos =1{(x,y) : V(x,y) = 0.5}

E={(xy):y=0}
i

M = {(_1)0)) (0,0), (170)}
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Characterization of orbits

We aim to classify the types of attractors in the phase plane.
First some definitions:

e A homoclinic orbit is a trajectory that joins a saddle point
equilibrium to itself — it moves away from the equilibrium on an
unstable manifold and returns on a stable manifold

e A heteroclinic orbit is a trajectory that joins two distinct
equilibrium points

e A separatrix cycle partitions the phase plane into two regions
with different characteristics — there are many ways to construct
separatrix cycles
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Homoclinic orbit example

Consider the Hamiltonian system

=Y
y =x + x*
HCxy) = 3y2 —5x% =34

Solution trajectories are the level sets of the Hamiltonian
function (constant energy curves in phase space):

[, ={(y): y* —x*—2x3 =}

For ¢ =0, Ty = {(x,¥): y? = x? + 2x3}is a trajectory that passes
through a saddle point at the origin:

DF(0,0) = ‘1) (1)] - 1={1,-1
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Homoclinic orbit visualization

Phase portrait of x =y

y = x + x*

[, contains a homoclinic orbit

saddle
point
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Heteroclinic orbit example

The phase plane of the undamped
pendulum has heteroclinic orbits

e There are saddle-point equilibria 5=

whenever the pendulum points
upward (6 = m); a heteroclinic

orbit connects these n

e The two heteroclinic cycles in
the upper and lower half-

plane define a heteroclinic -2f

separatrix cycle (in red)

Phase portraitof 6 = w
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Compound separatrix cycles

e A compound separatrix cycle is an orbit that surrounds multiple
equilibrium points with compatibly orientated separatrices

P
o<

e Note that everywhere such a cycle crosses itself must also be an
equilibrium point
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Poincaré-Bendixson theorem in the plane

Theorem: Let M be a positively invariant region of a system with a 2-
d phase space containing only a finite number of equilibria. Let x € M
and consider w(x). One of the following possibilities must hold:

I. w(x) is an equilibrium
ii. w(x) is a closed orbit
lii. w(x) consists of a finite number of equilibria x7,...,x" and or-

bits I with o(T") = x} and w(I") = X;f

Case iii defines a set of heteroclinic orbits (e.g. undamped pendulum)

Observations:
e If all the equilibria in M are stable, then there can be only one

e If there are no stable equilibria in M, then M must contain a
closed orbit (stable limit cycle)
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Poincaré-Bendixson and the Duffing oscillator

Back to the Duffing Oscillator: x =y
y:x—xB—]/y, ]/>O

o Level sets of V(x,y) =2y —2x? + - x* are positively invariant since

V(x,y) = —yy?

e Three equilibria lie in S, = {(x,y) : V(x,y) < ¢} for ¢ > O:
- an unstable equilibrium (0,0)
- two stable equilibria (—1,0), (1,0)

e Forc=0,35, splits into two sets that share a common point at (0,0)

e Therefore all trajectories leaving the unstable equilibrium point must
end up at one of the stable equilibria
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Two types of behaviour for the Duffing oscillator

w limits are:

e foci for 0 <y <8 1.03_ é‘%QW\;T?é&N\
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Additional Poincaré-Bendixson example

Consider the autonomous system:
Xy = xq + x5 — %1 (xf + x3)

Xy = —Xx1 + Xy — X (X7 + x3)
e Linearizing around the only equilibrium point (at (0,0)) gives Jacobian

Df(0,0) = _11 ﬂ = A=14j (an unstable spiral)

o IfV =x%+4x% then V =2x%; + 2x,%, = 2x2 + 2x2 — 2(x? + x3)?
> V=2V/1-"V)
= IV <0 whenever V > 1
so S, ={(x,y) : V < c}isinvariantforc > 1

e Since there is only an unstable equilibrium point inside Sy,
Poincaré-Bendixson implies that §; must contain a stable limit cycle
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Visualizing the additional example

The phase portrait has an unstable spiral within a stable limit cycle

Aam
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