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L ecture 6 overview

e This lecture will focus on analyzing limit cycles, conditions for their
existence and stability

e Last lecture the Poincaré-Bendixson theorem gave us criteria to
establish whether closed orbits exist; we can also establish if they do
not exist, through Bendixson's and Dulac’s criteria

e Index theory will help us characterize closed trajectories in the phase
plane, and to determine whether it is possible for orbiting trajectories
to exist

e We will assign stability to limit cycles through the concept of a
Poincaré map to help us analyze them



Periodicity

Definition: A solution ¢(xq,t) of the autonomous system x = f(x)

satisfying ¢(xg,0) = xq is called periodic if there exists some T" > 0
such that ¢(t,x¢) = ¢(t + T, %x¢) for all t € R

e Given a periodic solution ¢(xq,t), the minimal value of T' > 0 for
which ¢(t,xg) = ¢(t+T,xq) is called the period of the solution

e This lecture only considers orbits with finite period

Hence we exclude separatrix cycles because it takes infinite time
for homo-/heteroclinic connections to go from « to w limits, so
t +T" then makes no sense



Proving a periodic orbit does not exist

e Bendixson's criterion can be used to show that a given 2nd order
dynamical system does not have any periodic solutions

o Let x = (z,y) € R? denote the state of the system x = f(x)
and recall that div(f) =V - f = %’;“ + %i; if

()= |0

Bendixson’s criterion: if V -f is not identically zero, and if V - f does
not change sign in a simply connected region D of the phase plane,
then the 2nd order system x = f(x) has no closed orbits in D



Outline proof for Bendixson's criterion

e Since x and y are parametric in ¢, the solution trajectories satisfy

dy _ Jy
de [,

y:fy dt” dt fa:

e Suppose a closed orbit I' C D exists,
then f,dy — f,dr =0o0n1I so

$ (fody — 1, d) =0

and by Stokes's theorem, if I' encloses a region S C D then

ﬁ(fxdy—fydx)=/S(V-f)d:vdy=L(%ﬁ+%f;?f)dmdy=o

e So If V - f is nonzero and doesn’'t change sign in D, then our
supposition must be false, i.e. no orbit is possible



Modification: Dulac’s criterion

Consider the same differential equations, but also allow the functions
fz(x,y) and f,(z,y) to be multiplied by another function B(x,y)

Dulac’s criterion: if B is a continuously differentiable function on a
domain D of the phase plane, and if the quantity

O(Bf,)  O(B1,)
Ox 0y

— V- (Bf)

is not identically zero and does not change sign in the domain, then
the system x = f(x) has no closed orbits in the domain D



Bendixson example 1

Return again to the Duffing oscillator, which is described for v > 0 by

dx
- =Y = fo(z,y)
dy
— == =y = fy(z,y)
e Here V -f = —~, so Bendixson's criterion implies that:

- for v # 0 there are no solution trajectories that are closed
orbits

- for v = 0 periodic solutions are possible

e As we saw in lecture 4, for v = 0 the system is Hamiltonian,
and its trajectories can be studied using the level sets of the

Hamiltonian function



Example 1 visualisation

y =0.5
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e no closed orbits for y > 0

e closed orbits for y =0
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Bendixson example 2

Now modify the second Duffing oscillator equation to get

dx

=Y = fu(z,y)
dy
— == —yytaty = fy(@,y)

o Here V- f = —y + 27

e Using Bendixson's criterion, it be can’'t concluded that there are
no closed orbits

- there can't be a closed orbit entirely within a region of phase
space where V-f <0orV-f >0

- but orbits could exist because V - f can change sign



Gradient systems and orbits

Recall that for a gradient system we have x = —VV

e Consider the time-derivative of the potential function:

. dV
V = — =
dt

VV - x=—-x-x=—|x[°

e If the solution is on a closed orbit of period I', then we must have
V(x(T+1t) -V (x(t) =0 Wt

But integrating V w.r.t. ¢ gives

t+T . t+T
V(x(T + 1)) — V(x(t)) :/t th:_/t %] dt

and the only way this can equal zero is if x(¢) is at an equilibrium
point, so gradient systems cannot have periodic solutions
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Gradient systems and orbits




Index theory

For two-dimensional systems, we have seen that analyzing solution
trajectories is facilitated by using techniques applicable to fluid flow

Bendixson's criterion checks the circulation of a vector field:

r1 = f1(z1,72) } f:[f1] s

Tty = fo(x1,T2) /2

j{[ ]dl /Vx[_]ds /Vde

Index theory translates circulation into a quantity that takes simple
integer values; it quantifies the net change in the angle a flow makes

with the x; axis when traversing loop S

WL

fz(ﬂflaxz))

d(r1,x0) = arctan<fl (21, 7)
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Index of a curve

e The index of a non-intersecting, continuous differentiable closed
plane curve T (i.e. a simple loop), written I(I"), is defined as

1) = 5= § do

e Qualitatively, the index measures how many times the vectors on
the curve rotate anticlockwise during one anticlockwise trip around
the loop

il

index = 0 index = 1
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Properties of indices

e The index is always an integer (one must always rotate by a
multiple of 2m to get the flow angle back to where it started)

e If there are no equilibria inside a loop T, then its index is I(I’) = 0

e |If loop I' coincides with a closed orbit, then I(I") =1
e |If loop I' encloses a saddle equilibrium point, then I(I') = —1
e |If loop I" encloses any other equilibrium point, then I(T) =1

e The index of a loop that encloses multiple equilibria is the sum of
the indices of loops around the individual equilibria enclosed
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General conclusions from indices

e Any loop of index 0 that does not contain equilibrium points
cannot be a solution trajectory

To be a valid trajectory, it would have to be an orbit, but that
requires it to have index 1, not 0

e Any loop around a single saddle node cannot be a solution
trajectory

To be a valid trajectory, it would have to be an orbit, but that
requires it to have index 1, not —1
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Return to Bendixson example 2

e Governing system: T =1y
y=1x -z’ —yy+a’y

e Three hyperbolic equilibria: (-1,0), (0,0), (1,0)
stable nodes or foci at (+1,0) and a saddle node at (0,0)
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Example 2 visualisation

Phase portrait for y = 2

Periodic solution
in predicted
location!

16



Another index theory example

Consider Zi?l = 581(3 — 1 — 2:132)

j?g = 562(2 — X1 — .CCQ)

+ equttrom pains == { 2], [1]. 1] 1]}

3 — 25[31 — 2$2 —25171
—I9 2 — r1 — 25132

e Jacobian: Df(x) = [

det(Df(x*) — M) =0
— A=(3,2),(=2,-1),(=3,-1), (-1 £ V?2)

e properties: unstable node, stable node, stable node, saddle
indices: 1, 1,1, —1
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Continuing the example

o BB B
Equilibrium points x* = { [0] 2]" 0] 1%

=1 I=1 T=1 I=-1

e a valid orbit must have index I =1
e trajectories cannot cross

e no equilibria in the 2nd, 3rd, or 4th quadrants so they cannot
contain a closed trajectory

e there are trajectories lying on the 1 and x5 axes, so no trajectory
can cross into the 2nd, 3rd, or 4th quadrants

e since trajectories cannot encircle the equilibria that lie on the
axes, it is not possible enclose a set of indices that add to 1

—> there are no possible closed orbits
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Visualization

e Graphical illustration of arguments

X

@ Index = -1: not

Index = 0: not a
trajectory

(O

a trajectory

Index = 0: not a
trajectory

e Phase portrait
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Limit cycles and stability

So far we have used the term limit cycle informally
but it is worth putting some rigour behind our terms

e Limit cycles are isolated periodic orbits, which can be stable or
unstable (a cycle around a linear centre is not isolated and
hence is not a limit cycle)

e In the phase plane, a limit cycle is necessarily the a or w limit
set of some trajectory other than itself

Definition: A periodic orbit I' is said to be stable if for every € > 0

there is a neighbourhood U of I" such that for x € U the distance
between ¢(t,x) and I is less than €. Orbit I' is called asymptotically

stable if it is stable and, for all x € U, this distance tends to zero as
t tends to infinity
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Conditions for limit-cycle stability

Let X = f(X) have a periodic solutionx = y(t),0 < t < T, then the
periodic orbit I lies on y(t)

The periodic orbit is asymptotically stable only if

[15 thmas

e For planar systems, if ' is the w limit set of all trajectories in the
neighbourhood of T', then it is a stable limit cycle

e For planar systems, if ' is the a limit set of all trajectories in the
neighbourhood of I', then it is an unstable limit cycle

e For planar systems, if I' is the w limit set for one trajectory and
the a limit set for another, it is a semi-stable limit cycle
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Limit cycle example

Examine the autonomous system
i=—y+az(l—z°—y*)? F=r(l—r
y=x+y(l—2*—y?)? f=1

N\\\\\\\rr777a

e Forr#17>0 | 5§§§\§§§\\r\\{(r/ iz
therefore solution trajectories 3;\“\‘\5‘\7‘,’2}?7?::\

spiral outwards | l‘r_g/////ﬁ“:?“?‘{\\

e Forr=17=0 —

therefore a semi-stable | Z;/f'// \

limit cycle M f/////'/,/\ Nt N
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The Poincaré map

e The Poincaré map (sometimes called the ‘return map’) is an
important tool for the analysis of dynamical systems

e For a periodic orbit, consider a hyperplane X that is perpendicular
to the orbit's trajectory

e Given a point x on the orbit and in the hyperplane, consider
where the point moves to once it has traversed the orbit once;
this process defines a map

x ~ P(x)

e As this mapping is iterated, the intersection point moves in the
perpendicular hyperplane

e |Ifitis a periodic orbit, then the iteration of the map will arrive at
a stationary point, x = P(x)
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Graphical representation

Hyperplane X

P(x)

=g |

X0




Poincaré map example

Return to the system we discussed in Lecture 5:

b =—y+z(l—z°—y°) r=r(l—r?)
y=x+y(l—2z°—y°) 0 =1

e In Lecture 5 we showed that this has a stable limit cycle, which
Is an attractor for the whole plane excluding the origin

e Solving for (r(t),0(t)) given initial condition (rg, 6):

dr r(t) dr t
1 — S = | dt=t
== / r(1—r2) /0

—~ . O=0+1
\/1— (1— 1 )2t
0
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Poincaré map example continued

e Consider the hyperplane X defined by the ray 8 = 6, through the origin
that’s crossed by a solution trajectory at times t = 0,2m, 4m, ...

1

P(ry) = ,
\/1 - (%2 - 1)6_47T
0
P(ro) " To
e HereP(1)=1,sor=1
is a fixed point 9,

e This is a stable limit cycle
because

dP )
- — p AT <1
d’l“ r=1 ¢
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