C24: Dynamical Systems

Mark Cannon mark.cannon@eng.ox.ac.uk

Lecture 7 overview

- We have considered the behaviour of autonomous systems with a single set of parameters, which were assumed to be known
- Now we will focus on how system behaviour changes depending on the values of the constant parameters of the system model

• Equilibrium points can change positions and character as the parameters change, leading to a **bifurcation** in the response

 This lecture will focus on categorizing bifurcations, and on providing criteria that can be used to classify them

Local bifurcations

Until now our focus has been autonomous systems of the form

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$

• Recall (Lecture 1) that we can also consider \mathbf{f} to depend on a constant vector of parameters $\mathbf{p} \in \mathbb{R}^p$:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}; \mathbf{p})$$

• This lecture considers the structural stability of solution topology in phase space near equilibrium points as a function of the vector \mathbf{p}

 Here p may also be called a bifurcation vector or bifurcation parameter, because the character of solution trajectories may branch (bifurcate) if the parameter values change

1-D bifurcations

 The simplest systems to consider are autonomous systems with solutions on the (1-D) phase line

$$\dot{x} = f(x; p), \qquad x, p \in \mathbb{R}$$

- A bifurcation occurs when the number or type of equilibrium points changes as parameter p is changed, e.g. stable to unstable
- Three types of 1-D bifurcation:
 - saddle-node
 - transcritical
 - pitchfork
- Bifurcations are analyzed using "normal forms" standardized equations representing various classes of problem (not the same as linear system normal forms!)

Saddle-node bifurcation

The normal form of a system with a saddle-node bifurcation is

$$\dot{x} = p - x^2$$

- There are stationary points when $0 = p x^2 \implies x = \pm \sqrt{p}$
 - $-p > 0 \Rightarrow$ two equilibria (one unstable, one stable)

 $-p = 0 \Rightarrow$ one equilibrium point (a saddle)

 $-p < 0 \Rightarrow$ no equilibrium points

• A **bifurcation diagram** shows positions and types of equilibria (vertical axis) as p varies (horizontal axis); solid lines show stable equilibria, dashed lines show unstable equilibria

Saddle-node bifurcation diagram

• Normal form $\dot{x} = p - x^2$

$$-p > 0$$

$$-p = 0$$

$$-p < 0$$

characteristic flows on the phase line

Bifurcation diagram

Transcritical bifurcation

The normal form of a system with a transcritical bifurcation is

$$\dot{x} = px - x^2 = x(p - x)$$

- There are equilibrium points at x = 0 and x = p
 - $-p > 0 \Rightarrow$ two equilibria (one unstable, one stable)

 $-p = 0 \Rightarrow$ one equilibrium point (a saddle)

 $-p < 0 \Rightarrow$ two equilibria (one unstable, one stable)

• There is always a stationary point at x=0, but its stability depends on p: the equilibria swap character as p passes through the saddle point at p=0

Transcritical bifurcation diagram

• Normal form $\dot{x} = px - x^2$

$$-p > 0 \qquad x$$

$$-p = 0 \qquad x$$

$$-p < 0 \qquad x$$

characteristic flows on the phase line

Bifurcation diagram

Pitchfork bifurcation

The normal form of a system with a pitchfork bifurcation is

$$\dot{x} = px - x^3 = x(\sqrt{p} + x)(\sqrt{p} - x)$$

- There are stationary points at x=0 and, if p>0 at $x=\pm\sqrt{p}$
 - $-p > 0 \Rightarrow$ three equilibria (one unstable, two stable)

 $-p \le 0 \Rightarrow$ one equilibrium (stable)

Tangency conditions

• For a one-dimensional autonomous system, the locations x_0 , p_0 of bifurcation points are identified by tangency conditions

$$f(x_0, p_0) = 0 \qquad \frac{\partial f}{\partial x}\Big|_{x_0, p_0} = 0$$

- The first condition says that x_0 is an equilibrium point; the second says that x_0 is a root with multiplicity two, so is non-hyperbolic
- For example consider the transcritical bifurcation: $(px-x^2)|_{p_0,x_0}=x_0(p_0-x_0)=0 \\ \frac{\partial}{\partial x}(px-x^2)|_{p_0,x_0}=p_0-2x_0=0 \\ \Rightarrow (x_0,p_0)=(0,0)$

Generally these conditions decide whether a bifurcation exists;
 additional conditions classify the bifurcation

Tangency for saddle-node bifurcation

 For a bifurcation we need

$$f(x_0, p_0) = 0$$
$$\frac{\partial f}{\partial x}\Big|_{x_0, p_0} = 0$$

For a saddle bifurcation we also need f to be **locally linear** in the parameter p and **locally quadratic** in the state x:

$$\left. \frac{\partial f}{\partial p} \right|_{x_0, p_0} \neq 0, \qquad \left. \frac{\partial^2 f}{\partial x^2} \right|_{x_0, p_0} \neq 0$$

Tangency for transcritical bifurcation

 For a bifurcation we need

$$f(x_0, p_0) = 0$$

$$\frac{\partial f}{\partial x}\Big|_{x_0, p_0} = 0$$

For a transcritical bifurcation we also need f to be **locally bilinear** in x and p, and **locally quadratic** in the state x

$$\left. \frac{\partial f}{\partial p} \right|_{x_0, p_0} = 0, \quad \left. \frac{\partial^2 f}{\partial x \partial p} \right|_{x_0, p_0} \neq 0, \quad \left. \frac{\partial^2 f}{\partial x^2} \right|_{x_0, p_0} \neq 0$$

Tangency for pitchfork bifurcation

For a bifurcation we need

$$f(x_0, p_0) = 0$$

$$\frac{\partial f}{\partial x}\Big|_{x_0, p_0} = 0$$

For a pitchfork bifurcation we also need f to be **locally bilinear** in x and p, and **locally cubic** in x

$$\left. \frac{\partial f}{\partial p} \right|_{x_0, p_0} = 0, \quad \left. \frac{\partial^2 f}{\partial x \partial p} \right|_{x_0, p_0} \neq 0, \quad \left. \frac{\partial^2 f}{\partial x^2} \right|_{x_0, p_0} = 0, \quad \left. \frac{\partial^3 f}{\partial x^3} \right|_{x_0, p_0} \neq 0$$

Tangency conditions example

Consider the system

$$\dot{x} = p \ln x + x - 1, \quad p < 0$$

• This has an equilibrium at x = 1 and has a second equilibrium only if $p \neq -1$

• Tangency conditions show that $p_0 = -1$ is a **bifurcation**:

$$p_0 \ln x_0 + x_0 - 1 = 0$$

$$\frac{\partial}{\partial x} (p \ln x + x) \Big|_{x_0, y_0} = 0 \qquad \Longrightarrow (x_0, p_0) = (1, -1)$$

•
$$\frac{\partial}{\partial p}(p\ln x + x)\Big|_{x_0, p_0} = \ln(x_0) = 0$$
 $\frac{\partial^2}{\partial x \partial p}(p\ln x + x)\Big|_{x_0, p_0} = \frac{1}{x_0} = 1$ $\frac{\partial^2}{\partial x^2}(p\ln x + x)\Big|_{x_0, p_0} = -\frac{p_0}{x_0^2} = 1$ \Longrightarrow transcritical

2-D bifurcations

• We can also characterize bifurcations for autonomous systems of higher order (than 1st order), so long as they have just a single scalar parameter p

• If a 2-D system $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}; p)$ has an equilibrium at \mathbf{x}_0 , then bifurcations can be characterized with Sotomayor's theorem (cf. Perko 4.2), which uses the Jacobian of \mathbf{f} to formulate higher-dimensional tangency conditions

 We will not apply the theorem in detail here; instead we will explore an example of a 2-D system with a bifurcation

2-D bifurcation example

Does the origin have a bifurcation for the following system?

$$\dot{x} = px + y + \sin x$$

$$\dot{y} = x - y$$

Find equilibria:

$$0 = px_0 + y_0 + \sin x_0$$
$$0 = x_0 - y_0$$

if p = -2, the line drawn by the left side of this equation is tangent to the function on the right;

expect bifurcation at p = -2;

2-D bifurcation example

System
$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} px + y + \sin x \\ x - y \end{bmatrix} = \mathbf{f}(x, y)$$

Jacobian:

$$D\mathbf{f}(x,y) = \begin{bmatrix} p + \cos x & 1\\ 1 & -1 \end{bmatrix}$$

$$D\mathbf{f}(0,0) = \begin{bmatrix} p+1 & 1\\ 1 & -1 \end{bmatrix}$$

eigenvalues:

$$eig(Df(0,0)) = \frac{1}{2}(p \pm \sqrt{(p+2)^2 + 4})$$

ullet eigenvalues are: negative if p<-2

opposite in sign if
$$p > -2$$
 (unstable direction is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$)

• more than one equilibrium point exists for p>-2

2-D bifurcation example (cont'd)

Phase portraits for p < -2 and p > -2:

A **pitchfork** bifurcation:

Hopf bifurcations

- The example just considered is a 2-D system with an equilibrium point at 0 that has:
 - one negative eigenvalue for all values of the parameter p,
 - another eigenvalue passing through 0 at p=-2 the non-hyperbolic behaviour at p=-2 was found to be a pitchfork bifurcation

- A 2-D system undergoes a Hopf bifurcation if the non-hyperbolic point is a centre (with pure imaginary eigenvalues)
 - in this case the stability of both eigenvalues can change

Conditions for a Hopf bifurcation

• Assume a two-dimensional system with a scalar parameter p and equilibrium point $\mathbf{x}^* = \mathbf{x}^*(p)$:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, p), \quad \mathbf{f}(\mathbf{x}^*, p) = 0$$

The system undergoes a Hopf bifurcation if

$$\operatorname{eig}(D\mathbf{f}(\mathbf{x}^*, p)) = \lambda_{\pm}(p) = \alpha(p) \pm j\omega(p)$$

for p in the range

$$p_0 - \epsilon$$

for some $\epsilon > 0$ with

$$\alpha(p) \begin{cases} <0 & \text{for } p < p_0 \\ =0 & \text{for } p = p_0 \\ >0 & \text{for } p > p_0 \end{cases}$$

Supercritical Hopf bifurcation

The supercritical Hopf bifurcation is best thought of in polar coordinates (r, θ) :

- below the critical value of the parameter, there is a stable spiral equilibrium
- above the critical value, there is an unstable spiral with an enclosing stable limit cycle

the limit cycle's radius r expands with increasing p

Subcritical Hopf bifurcation

The subcritical Hopf bifurcation behaves as follows:

- below the critical value of p there is a stable spiral surrounded by an unstable limit cycle
- the limit cycle radius shrinks as p increases
- at the critical value the cycle collapses to a fixed point
- above the critical value there is an unstable spiral

Degenerate Hopf bifurcation

The degenerate Hopf bifurcation behaves as follows:

- below the critical value of p there is a stable spiral
- at the critical value of p the spiral becomes a nonlinear centre whose orbit is not isolated (r(t)) depends on initial conditions)
- above the critical value of p there is an unstable spiral

 Called a 'degenerate' bifurcation because there is a non-isolated orbit at the critical parameter value

• The degenerate Hopf bifurcation has no limit cycles for any value of the parameter \boldsymbol{p}

Hopf bifurcation example

Consider the system
$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} px - y + xy^2 \\ x + py + y^3 \end{bmatrix} = \mathbf{f}(x,y)$$

- Just one equilibrium point: $\mathbf{f}(x,y) = (0,0) \implies (x,y) = (0,0)$
- Eigenvalues of Jocabian at (x,y) = (0,0):

$$D\mathbf{f}(0,0) = \begin{bmatrix} p+y^2 & -1+2xy \\ 1 & p+3y^2 \end{bmatrix} \Big|_{(0,0)} = \begin{bmatrix} p & -1 \\ 1 & p \end{bmatrix} \implies \lambda_{\pm} = p \pm j$$

• From this we expect a Hopf bifurcation at p=0

Hopf bifurcation example (cont'd)

What type of Hopf bifurcation does this system have?

Transform into polar coordinates:
$$\dot{r}=\frac{x\dot{x}+y\dot{y}}{r}=r(p+r^2\cos^2\theta)$$

$$\dot{\theta}=\frac{x\dot{y}-y\dot{x}}{r^2}=1$$

-
$$p < 0 \implies \dot{r} = pr + ry^2$$
 $\dot{r} < 0$ for $y < |p|^{1/2}$ so a stable spiral

Therefore a **subcritical Hopf bifurcation** occurs at p = 0, so expect an unstable limit cycle

Hopf bifurcation example: phase portraits

$$\dot{x} = px - y + xy^{2} \iff \dot{r} = r(p + r^{2}\cos^{2}\theta)$$

$$\dot{y} = x + py + y^{3} \iff \dot{\theta} = 1$$

Stable spiral with unstable limit cycle

Unstable spiral

Unstable spiral