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L ecture 7 overview

e We have considered the behaviour of autonomous systems with a
single set of parameters, which were assumed to be known

e Now we will focus on how system behaviour changes depending on
the values of the constant parameters of the system model

e Equilibrium points can change positions and character as the
parameters change, leading to a bifurcation in the response

e This lecture will focus on categorizing bifurcations, and on
providing criteria that can be used to classify them



| ocal bifurcations

e Until now our focus has been autonomous systems of the form

x = f(x)

e Recall (Lecture 1) that we can also consider f to depend on a constant
vector of parameters p € RP:

x = f(x; p)

e This lecture considers the structural stability of solution topology
in phase space near equilibrium points as a function of the vector p

e Here p may also be called a bifurcation vector or bifurcation
parameter, because the character of solution trajectories may

branch (bifurcate) if the parameter values change



1-D bifurcations

e The simplest systems to consider are autonomous systems with
solutions on the (1-D) phase line

x = f(x;p), x,p €ER

e A bifurcation occurs when the number or type of equilibrium points
changes as parameter p is changed, e.g. stable to unstable

e Three types of 1-D bifurcation:
- saddle-node
- transcritical

- pitchfork

e Bifurcations are analyzed using “normal forms” — standardized
equations representing various classes of problem
(not the same as linear system normal forms!)



Saddle-node bifurcation

e The normal form of a system with a saddle-node bifurcation is

X =p—x*

e There are stationary points when0 =p —x2 = x = +Vp

— p > 0 = two equilibria (one unstable, one stable)

® e 3 X

— p = 0 = one equilibrium point (a saddle)
R X

— p < 0 = no equilibrium points

X

e A bifurcation diagram shows positions and types of equilibria

(vertical axis) as p varies (horizontal axis); solid lines show stable
equilibria, dashed lines show unstable equilibria



Saddle-node bifurcation diagram

e Normal form x = p — x?
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Transcritical bifurcation

e The normal form of a system with a transcritical bifurcation is

x =px—x*=x(p—x)

e There are equilibrium pointsat x =0 and x =p

— p > 0 = two equilibria (one unstable, one stable)

~——o——— X

— p = 0 = one equilibrium point (a saddle)
R X

— p < 0 = two equilibria (one unstable, one stable)

. S X

e There is always a stationary point at x = 0, but its stability

depends on p: the equilibria swap character as p passes
through the saddle point at p = 0



Transcritical bifurcation diagram

e Normal form x = px — x?
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Pitchfork bifurcation

e The normal form of a system with a pitchfork bifurcation is
% = px — 23 = x(yB + )P — )

e There are stationary points at x = 0 and, if p > 0 at x = +Vp
— p > 0 = three equilibria (one unstable, two stable)
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— p < 0 = one equilibrium (stable)
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Tangency conditions

For a one-dimensional autonomous system, the locations x,, p, of
bifurcation points are identified by tangency conditions

of

Ox 0,P0

f(aj07p0):() =0

The first condition says that x; is an equilibrium point; the second
says that x; is a root with multiplicity two, so is non-hyperbolic

For example
consider the 5
. ,
tr.anscrl’FlcaI 8—(p$ — 22)|pg w0 = Po — 220 =0
bifurcation: x

(P — 2%)|pg,20 = To(P0 — T0) =0
=4 (x07p0) — (070)

Generally these conditions decide whether a bifurcation exists;
additional conditions classify the bifurcation
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Tangency for saddle-node bifurcation

e For a bifurcation
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Tangency for transcritical bifurcation
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e For a transcritical bifurcation we also need f to be locally bilinear in x
and p, and locally quadratic in the state x
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Tangency for pitchfork bifurcation
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Tangency conditions example

Consider the system

r=plhr+xr—1, p<O

This has an equilibrium at x =1
and has a second equilibrium
only if p #+# —1

Tangency conditions show that p, = —1 is a bifurcation:

polnxg+z29—1=0

) — (x0,p0) = (1, 1)

—(plnx + x =0

Ox (p ) Z0,Po
O 02 1
—(plnx + x = In(zg) =0 Inx +x = — =1
ap (p ) x0,P0 ( 0) 8378]9 (p ) x0,P0 Zo
82
@(p Inz + x) = —% =1 = transcritical

L0,P0 0
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2-D bifurcations

e We can also characterize bifurcations for autonomous systems of
higher order (than 1st order), so long as they have just a single

scalar parameter p

e |If a 2-D system x = f(X; p) has an equilibrium at x,, then
bifurcations can be characterized with Sotomayor’s theorem
(cf. Perko 4.2), which uses the Jacobian of f to formulate
higher-dimensional tangency conditions

e We will not apply the theorem in detail here; instead we will
explore an example of a 2-D system with a bifurcation
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2-D bifurcation example

Does the origin have a bifurcation for the following system?

X =px+7y+sinx

y=x—-Yy

0 =pxy + yo + sin x Vo = Xg

e Find equilibria: =
(p + Dxo

— sin x

if p =-2, the line drawn
by the left side of this
equation is tangent to the
function on the right;

expect bifurcation at
p=-2
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2-D bifurcation example

System [a:] _ [pa: + y + sin a:] ~ f(.y)

Y L—Y
e Jacobian: Df(x,y) = [p%—;osa: _11]
p+1 1
pron =it
eigenvalues: eig(Df(O, O)) = %(p ++/(p+2)2+ 4)

e eigenvalues are: negative if p < —2

opposite in sign if p > —2 (unstable direction is [

e more than one equilibrium point exists for p > —2

1
1

i
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2-D bifurcation example (cont'd)

Phase portraits for p < —2 and p > —2:
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Hopf bifurcations

e The example just considered is a 2-D system with an equilibrium
point at 0 that has:

- one negative eigenvalue for all values of the parameter p,

- another eigenvalue passing through 0 at p = —2

the non-hyperbolic behaviour at p = —2 was found to be a pitchfork
bifurcation

e A 2-D system undergoes a Hopf bifurcation if the non-hyperbolic
point is a centre (with pure imaginary eigenvalues)
— in this case the stability of both eigenvalues can change
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Conditions for a Hopf bifurcation

e Assume a two-dimensional system with a scalar parameter p and

equilibrium point x* = x*(p):

x = f(x,p),

f(x*,p) =0

e The system undergoes a Hopf bifurcation if

eig(Df(X*,p)) = A+ (p) = a(p) £ jw(p)

for p i

n the range

Po—€<p<po+E€

for some € > 0 with

a(p) 4

(< 0 for p < po
=0 forp=pg

| >0 for p> po

Im(\)

A ’,)\+(p)
e
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>
| Re(A)
____X__Zj':]zo
P < Do §\~>¢\\
D > Po ‘)\_(p)
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Supercritical Hopf bifurcation

The supercritical Hopf bifurcation is best thought of in polar
coordinates (r, 8):

- below the critical value of the parameter, there is a stable spiral
equilibrium

- above the critical value, there is an unstable spiral with an
enclosing stable limit cycle

the limit cycle's radius r expands with increasing p

¥
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Subcritical Hopf bifurcation

The subcritical Hopf bifurcation behaves as follows:

- below the critical value of p there is a stable spiral
surrounded by an unstable limit cycle

- the limit cycle radius shrinks as p increases

- at the critical value the cycle collapses to a fixed point

- above the critical value there is an unstable spiral

/

_—_~~

S

/
P < Po

Bifurcation in

polar co-ords
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Degenerate Hopf bifurcation

The degenerate Hopf bifurcation behaves as follows:
- below the critical value of p there is a stable spiral

- at the critical value of p the spiral becomes a nonlinear centre
whose orbit is not isolated (r(t) depends on initial conditions)

- above the critical value of p there is an unstable spiral

e C(alled a ‘degenerate’ bifurcation because there is a non-isolated orbit
at the critical parameter value

e The degenerate Hopf bifurcation has no limit cycles for any
value of the parameter p
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Hopf bifurcation example

: T pr — Y + TY?
Consider the system | .| = = f(x,
y [y] [x+py+y3] (,y)

e Just one equilibrium point: f(z,y) = (0,0) = (x,y) = (0,0)

e Eigenvalues of Jocabian at (z,y) = (0,0):

2 _
DE(0,0) = Pty 1+ ny]

1 p + 3y?

(0.0) b

e From this we expect a Hopf bifurcation at p =0
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Hopf bifurcation example (cont'd)

What type of Hopf bifurcation does this system have?

Transform into polar coordinates: 7 = Yy r(p + 1% cos® 0)
7
. XTY — YT
o— 2y 2?J _1
r
-p>0 = 7r>pr r > 0 for all ¢

so no limit cycle

- p=0 = >0 7 >0 for all ¢
so no limit cycle

- p<0 = fF=pr+ry? <0 fory < |p|'/?
so a stable spiral

Therefore a subcritical Hopf bifurcation occurs at p = 0,
so expect an unstable limit cycle
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Hopf bifurcation example: phase portraits

.
|

= pr — y + 2y°
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