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| ecture 8 overview

e Now we shift attention away from differential equations
and consider discrete time systems, particularly 1-D maps:

Tipy1 = F(xg)

e We will investigate the behaviour of these maps graphically
using cobweb plots

e Unlike 1-D differential systems, the discrete 1-D map can exhibit
the phenomenon of chaos; a few mathematical techniques will help
analyze such systems

e Finally we return to differential systems, examining the
chaotic Lorenz equations and identifying a strange attractor



Analysis of map fixed points

e Given a discrete map xx11 = F(x}), a fixed point x* satisfies

e The map’'s behaviour near the equilibrium point x* can be char-
acterised by linearising F

x* 4+ wii1 = F(x*) + DF(x™)wg + . ..
— wii1 = DF(x™)wy + ...

e Stability can be assessed by analysing properties of the Jacobian
DF at the equilibrium point

e Note that for the 1-D case the Jacobian of the map is simply

_dF
_dilfx*

DF(x™)



Stability of fixed points

e For a linear map the stability of the fixed point at the origin can
be understood by diagonalisation (cf example sheet 1)

Xpi1 = Ax, — x,=A"xy = x,= VA"V 1x,

e The behaviour as n — oo determines the stability of the map,
e.g. in 2-D

Al, || >1 = unstable node

>~

|u| <1 = stable node

lim A" = lim [)\ On]
Al >1, |ul <1 = saddle

e Eigenvalues inside the unit circle are stable

e Hence for the 1-D case x* is a stable fixed point if |DF(z*)| < 1



Cobweb diagrams

e Cobweb diagrams represent graphically the iterates of a map

e Given map x;,.1 = F(xy), use
the following procedure:

1. Go to position x; on the
horizontal axis

2. Draw a vertical line
up to y = F(xy)

3. Draw a horizontal to
y = x and set xp4q1 = F(xy)

4. Repeat to get x4, etc.
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Example: cosine map

Consider xj .1 = cos x

Cobweb diagrams for two different starting points:
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The logistic map

Logistic map, e.g. population dynamics

Tra1 = reg(l — xp)

e Two fixed points

1
t =ra*(l-2%) = rx*[a:*—(l——)] =0 = 336{0»1_%}
r

e Jacobian linearization around equilibrium points:

Wga1 = TWg at ¥ =0

Wrt1 = rwg(1—22%) = { 1_1

Wigt1 = (2 — r)wg at =™

e Behaviour near x* = 0: population dies out if r < 1
population grows if r > 1

e What happens at the other equilibrium point?



Cobwebs for the logistic map
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As r increases past 1, fixed point moves away from zero

With further increase in r, solution becomes periodic, then aperiodic



Simulations for the logistic map
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Behaviour of the logistic map

Consider points near * = 1 — 1/r where the map’s linearization is

wrt1 = (2 — r)wg

e This equilibrium is stable if |2 —7| <1,ie. 1 <r <3

e For r > 3, (2 —1r) < —1, so oscillations appear, with period
doubling at fixed values of r as 7 increases

e The rate of doubling increases until  approaches ~3.57, at which
point the response ceases to be periodic

e As r continues to increase, the aperiodic behaviour continues
with brief intermittent ‘islands of stability’ that are periodic
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Periodicity of the logistic map

e Periodicity can be investigated by considering expressions like

Tpto = F(F(z)) = r?z,(1 — xp) 11— ra,(l— ay)]

e Fixed points of this map are called 2-cycles (they have period 2)
and solve the equation

¥ = F(F(z*)) =r’z*(1—2*)[1 —ra*(1 — z")]

— 1 e {0,1 — L L - (=217,

1+ D+ (D))

e A bifurcation occurs at » = 3, when the last 2 roots become real:

linearizing around these roots = stable for 3 < r < 1+v6 ~ 3.45

e Similar analysis is possible for 4-cycles, 8-cycles, ...but quickly
becomes intractable
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Orbit diagrams

An orbit diagram displays how a map changes with respect to a param-
eter (and an initial value)

The process
1. Choose a value of r and a starting point x
2. lterate the map m times (e.g. m = a few hundred)

3. Record the values obtained when iterating another n times (e.g.
n = a few hundred), and plot them on the diagram

4. Change r and repeat

Several plots are given in the lecture notes
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Orbit diagram for the logistic map
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Observe the bifurcations and doubling, as well as the descent into
aperiodicity



Chaos

The logistic map illustrates the phenomenon of dynamical chaos

Chaos is defined as aperiodic long-term behaviour in a deterministic
system that has a sensitive dependence on initial conditions

- Aperiodic long-term behaviour: The trajectories never settle down
to fixed points or periodic orbits

- Deterministic system: The trajectory is the solution of an equa-
tion with no noise - everything is certain and precise

- Sensitive to initial conditions: Trajectories that pass through
points that are close together in phase space diverge with time
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Lyapunov exponent

e The Lyapunov exponent measures how fast solutions that are
initially close together in phase space diverge (i.e. it quantifies
sensitivity to initial conditions)

e Consider the effect on long-term behaviour when perturbing the
initial condition from xg to xg + wo:
w1, = F(ZIZO + wo) — F(CIZ())
Wo = F(F([Co —+ wo))
— F(F(20))

r1 + w1 = F(xg + wo)
ZL‘Q—|—UJQ:F(F(£UO—|—’UJO))

e The Lyapunov exponent X\ scales the growth rate of wy:

rr +wg = F(-- - F(xg + wp))

[wi| & |wole™”
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Determination of Lyapunov exponents

Compute Lyapunov exponents using linearisation:

wy = F(zo + wp) — 21

~ F(xg) + DF(xg)wg — x1 = DF(xz0)wy
wo ~ DF(x1)w;

~ DF(x1)DF(xq)wq

k—1
Wy, ~ H DF(x;)w

1=1

The Lyapunov exponent is then given by

1
‘ Z Z In|DF(xz;)| (accurate for large k)
i=0

1
A= lim lim - In|2k
k— oo |wg|—0 k’ Wo
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Lyapunov exponents for the logistic map
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Dips in the exponent indicate periodic solutions



Chaos in flows

Chaos can also occur in differential systems

The Lorenz equations, which model convection in the atmosphere,
are a well-known system that exhibits chaos:

T =o(y—x) o > 0 : Prandtl number
Yy=rr—y—x2 r > 0 : Rayleigh number

z=uxy — bz b > 0 : constant parameter

e |f r <1, the only equilibrium is the origin

e If r > 1 two more equilibria appear via a pitchfork bifurcation:

(z*,y*, 2%) € {(Vb(r —1),/b(r —1),r — 1),
(=v/0(r = 1), =/b(r —1),r — 1)}
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Volume contraction in the Lorenz equations

From the Lorenz equations & =o(y — x)
Y=1rr—1y— Tz

z=uxy — bz
we can compute the divergence of the flow:

Jdo(y—xz) Orx—y—xz Oxy—bz
Ox i oy i 0z

V-f= =—(1+b+o0)

e Since V - f < 0, we have, for any control volume V:

/V-de:]{ f-dS = flow out — flow in < 0
1% oV

e So trajectories converge to a zero-volume region of phase space
but this zero-volume solution is neither a point or a limit cycle!
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Lorenz equations: stability 1

e A solution of the Lorenz equations cannot have unstable equilib-
rium points or unstable periodic orbits — both of these types of
solution imply expansion of the state space, not contraction

e Any fixed points must therefore be stable or saddles
if there are limit cycles, they must be stable

e Linearization reveals that the origin is a stable node for r < 1
and a saddle for r > 1

e For r < 1 Lyapunov analysis shows that the system is globally
asymptotically stable — there are no limit cycles and all trajectories
fall into the origin
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Lorenz equations: stability 2

e For r > 1 two new equilibria appear: assume o0 — b > 1 and let

o(c+b+3)
oc—b—-1

g —

then for
- 1 < r < ryg the two new equilibria are stable
- v = rgy they undergo a Hopf bifurcation

- r > rg there is a saddle point (and no attractors nearby)
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Strange attractor

Here we have a situation where:

the volume occupied by neighbouring trajectories in phase space
is always contracting

there are no stable equilibrium points

there are no stable limit cycles for » > 7y (Lorenz proved this)

trajectories cannot go to infinity

We conclude that there must be a zero-volume object that attracts the
trajectories - we call this a strange attractor
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The Lorenz butterfly

Plot of solution trajectory forc =3, r =294, b =1
initial condition (x,y,2) = (0.1,0.1,0.1)
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The Mandelbrot set

We now revisit a map defined over the complex numbers by
2pr1 =2 +c, ceC

e The point ¢ belongs to the Mandelbrot set if this iteration re-
mains bounded for all £ when starting at zg = 0

e To illustrate the set, we use different colours to show the rate of
divergence at c

e The Mandelbrot set is a strange attractor for the map; colours
indicate how close the points are to the attractor
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Thank youl!




