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1 Introduction to Dynamical Systems

Dynamical Systems is a discipline which studies the properties of sets of differ-

ential equations (in continuous or discrete time) without solving them. These

differential equations usually model the behaviour of a physical system. For

example, one can use dynamical systems theory to study mechanical systems

(e.g. the equations of motion of a simple pendulum) or the dynamics of an

ecosystem. Other application areas include the study of planetary orbits, fluid

mechanics, biology and many others.

The origins of Dynamical Systems can be traced back to Newtonian Mechan-

ics, where the solution of a set of differential equation models was used to

describe the time evolution of a mechanical system. The properties of many

systems, however, are difficult to understand by just looking at trajectories.

For example, it is difficult to appreciate the role of changes in parameters and

other uncertainties and classifying the type of trajectories (e.g. whether they

lead to a stable equilibrium, tend to a limit cycle, etc.). The need for a field

that studies such properties was identified by Henri Poincaré, who developed

much of the theory of Dynamical Systems, applied to planetary motions. Sev-

eral other researchers, such as Arnol’d, Pontryagin, Smale, etc. developed the

field further.

In this 8-lecture course, we will study several aspects of Dynamical Systems

theory and how it is applied in a range of examples. The syllabus is as fol-

lows:

Introduction to Dynamical Systems. Examples from different fields.

Maps, flows and questions of interest. Existence and uniqueness

of solutions. A geometric way of thinking about differential equa-

tions. Phase space, equilibria. Stability and linearized stability. Sad-

dles, nodes, foci and centres. Hartman-Grobman theorem. Lya-

punov functions. Gradient and Hamiltonian Systems. Vector fields

possessing an integral. Invariance. La Salle’s theorem. Domain

of attraction. Limit sets, attractors, periodic orbits, limit cycles.

Poincaré maps. Poincaré-Bendixson theorem. Index theory. Saddle-
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node, transcritical, pitchfork and Hopf bifurcations. Logistic map.

Fractals. Chaos. Lorenz equations.

This will be covered as follows:

1. Lecture 1: Introduction to Dynamical Systems. Examples from different

fields. Maps, flows and questions of interest. Existence and uniqueness

of solutions. A geometric way of thinking about differential equations.

2. Lecture 2: Phase space, equilibria. Stability and linearized stability. Sad-

dles, nodes, foci and centres.

3. Lecture 3: The stable, unstable and centre subspaces. Hartman-Grobman

theorem.

4. Lecture 4: Lyapunov functions. Gradient and Hamiltonian Systems. Vec-

tor fields possessing an integral.

5. Lecture 5: Invariance. La Salle’s theorem. Domain of attraction.

6. Lecture 6: Limit sets, attractors, periodic orbits, limit cycles. Poincaré

maps. Poincaré-Bendixson theorem. Index theory.

7. Lecture 7: Saddle-node, transcritical, pitchfork and Hopf bifurcations.

8. Lecture 8: Logistic map. Fractals. Chaos. Lorenz equations.

These notes contain most of the material you will need for this course; however,

especially when attempting the examples sheets, you may need to refer to

textbooks. The following books are available in the library:

1. “Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,

Chemistry and Engineering” by Steven H. Strogatz, Perseus Books Group,

2001. This is a very easy-to-read and understand textbook on dynamical

systems.

2. “Differential Equations and Dynamical Systems” by Lawrence Perko, Springer,

2000. This is a more mathematical textbook which covers some of the

material in these notes in more detail.

3. “Stability, Instability and Chaos: an introduction to the theory of nonlinear
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differential equations”, by Paul Glendinning, Cambridge Texts in Applied

Mathematics, 1994. This book offers a thorough mathematical analysis

of the topics covered in this lecture course.

Lectures will be pre-recorded and made available on Canvas.

These lecture notes and other information will be available on the C24 pages

on Canvas and at: https://markcannon.github.io/teaching

For questions, comments, and to report bugs and typos please email:

mark.cannon@eng.ox.ac.uk

There will be two examples classes: one covering lectures 1-4 and one covering

lectures 5-8. The classes will be held on Thursday and Friday of week 8 and

in week 1 of Hilary Term 2022.

There will be a revision class in Trinity Term.

1.1 Examples of Dynamical Systems

Let’s begin with a few examples.

Single species growth

Consider the case of a single species striving for its own food: this species can

grow and reach a population size, which we assume will be limited by resource

availability. If the population size happens to be above this so-called carrying

capacity limit, it will have to decrease. A simple model of this behaviour is

the logistic equation, which takes the form:

ẋ = bx
(

1− x

K

)
(1.1)

where x is the population at time t, ẋ = dx/dt, b > 0 is the growth (birth)

rate, and K is the carrying capacity.

Let’s try to solve this differential equation. We have

dx

bx
(
1− x

K

) = dt



Introduction to Dynamical Systems 4

The left hand side can be split using partial fractions to give

dx

bx
+

dx

bK
(
1− x

K

) = dt

and integrated, resulting in

ln |x| − ln
∣∣∣1− x

K

∣∣∣ = bt+ ln c

where c is a constant of integration. After a bit of maths, and assuming that

x > 0 we obtain the solution

x(t) =
cKebt

K + cebt

Where do solutions tend to as t→∞? One can take the limit as t→∞ and

conclude that limt→∞ x(t) = K.

Quite a bit of maths for a first order differential equation, modelling the growth

of one species! Imagine what this would look like if there were several species

involved.

Also, is this the complete story? What happens if x(0) = 0, e.g. at the ‘begin-

ning of time’? Or if for some reason we were interested in negative x(0)? In

these cases one would have to be more careful and explore all possibilities.

Dynamical systems differs from differential equation theory - in Dynamical Sys-

tems, we are not concerned with obtaining solutions to the differential equa-

tions modelling a system, but rather argue about the solution properties.

Let’s consider the right hand side of (1.1). Figure 1 shows what is called

the phase line of this system, the x axis. Circles indicate where ẋ = 0,

corresponding to points from which if someone ‘started’ (s)he would ‘stay

there forever’.

bx
(

1− x

K

)
= 0⇔ x = 0 or x = K

These are called equilibria. One can evaluate the direction of the velocity, dx
dt ,

on either side of the equilibria and indicate whether the evolution of (1.1) would

be such that the equilibria are ‘attracting’ or ‘repelling’ (stable and unstable

respectively).
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x = 0 x = K
x

Figure 1: The phase line of the logistic equation, Equation (1.1)

It turns out that one cannot ‘overshoot’ the stable equilibrium and ‘oscillate’

around it. We will see later on why. Figure 2 shows the system time trajecto-

ries.
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Figure 2: The time evolution of the logistic equation for b = 1, K = 5.
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A simple pendulum

The dynamics of the simple pendulum shown in Figure 3 can be derived using

Newton’s second law of motion, to give

m`θ̈ = −mg sin θ − k`θ̇

θ

m

ℓ

k

Figure 3: A simple pendulum

If we let x1 = θ and x2 = θ̇, this can be written in state-space as

ẋ1 = x2

ẋ2 = −g
`

sinx1 −
k

m
x2

Solving this set of differential equations is definitely not easy. Instead, let’s

consider the properties of the right hand side.

This system has several equilibria, satisfying

x2 = 0 and sinx1 = 0

This means that every point (nπ, 0) is an equilibrium, for any n ∈ Z. Out of

these equilibria only two are distinct: the vertically upwards and the vertically

downwards. Intuitively, small perturbations about the top equilibrium will cause

the pendulum to swing far away, while small perturbations about the (0, 0)

equilibrium will not cause such large deviations - this is a matter of stability

which we will discuss in detail in the next few lectures.

The phase-plane has axes x1 and x2 and trajectories on it are parameterized

by time. If we fill in the phase plane by arrows, the picture shown in Figure 4

emerges.
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Figure 4: Pendulum phase plane with k = 1, m = 1, ` = 1, g = 10.

With friction removed, the above equations read

ẋ1 = x2

ẋ2 = −g
`

sinx1

This system is conservative - the phase plane looks like Figure 5. What are

the key characteristics?
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The phase plane of the pendulum equation, l = 1, k = 0, m = 1, g = 10

Figure 5: Pendulum phase plane with k = 0, m = 1, ` = 1, g = 10.

Glycolytic oscillations

Consider a model of glycolysis which involves turning glucose (sugar) into

energy compounds, such as ATP. A simple model takes the form

ẋ1 = −x1 + ax2 + x2
1x2

ẋ2 = b− ax2 − x2
1x2

where x1 and x2 are concentrations of two intermediates. Let us simulate

this system for different parameter values and for different initial conditions

- Figure 6 shows the system behaviour for one parameter set but with two

different initial conditions. We will consider systems of this type in Lecture 5.

The double pendulum

We have examined the behaviour of the single pendulum - let us now consider

the double pendulum shown in Figure 7A.
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Glycolytic Oscillator with a =0.03 and b=0.6

Figure 6: The glycolytic oscillator with a = 0.03 and b = 0.6.
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Modelling this is beyond the scope of this course. Simulations of this system

from two sets of initial conditions with zero velocities but very close to each

other are shown in Figure 7B. What do you observe?
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The Mandelbrot set

The last example we will discuss concerns a discrete time system. Consider

the following map:

zk+1 = z2
k + c

where zk ∈ C (i.e. is complex) and c ∈ C. Sometimes this is written as

z 7→ z2 + c

Let’s consider how |zk| changes with various values of c, always starting from

the same initial condition, z0 = 0.
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Simulations of the Mandelbrot equation with c = r(1+j)
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A B

Figure 8: A: Simulations of the Mandelbrot equation with c = r(1 + j) for

different values of r. B: The Mandelbrot set

1.2 Terminology, Notation and Relevant Background

Having seen some examples, before we proceed, we should remind ourselves of

some important facts and introduce some new topics.
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1.2.1 Eigenvalues and Eigenvectors

Recall that the eigenvalues and eigenvectors of a matrix A ∈ Rn×n satisfy

Av = λv, v 6= 0

The eigenvalues can be found by solving the polynomial equation det(λI−A) =

0, and the corresponding eigenvectors can be found by solving the equation

Avi = λivi for each eigenvalue λi. There are always n eigenvalues λ ∈ C, and

complex eigenvalues come in complex conjugate pairs. If the eigenvalues λi,

i = 1, . . . , n are distinct (i.e. different from each other) then the corresponding

eigenvectors vi are linearly independent and span the whole of Rn, i.e., any

x ∈ Rn can be written as

x = c1v1 + . . .+ cnvn

with constant c1, . . . , cn. If some of the λ’s are repeated, then sometimes one

cannot obtain n linearly independent eigenvectors.

Suppose we have computed a complete set of eigenvalues λi ∈ C and there

exists a complete set of eigenvectors vi spanning Rn such that

Avi = λivi, vi 6= 0

We create two new matrices:

Λ =


λ1 0 · · · 0

0 λ2 0
... . . . 0

0 0 · · · λn

 , V =


...

...
...

v1 v2 · · · vn
...

...
...


Then

AV = VΛ

and therefore

A = VΛV−1, Λ = V−1AV

For the case that a 2× 2 real matrix A has 2 complex eigenvalues λ = a+ jb

and λ = a − jb and eigenvectors v = u + jw and v = u − jw, another
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representation of A takes the form

V−1AV =

[
a −b
b a

]
with

V = [w,u].

Example 1.1. Consider the matrix[
3 −2

1 1

]
with eigenvalues λ = 2 + j and λ = 2 − j and corresponding eigenvectors

[1 + j, 1]> and [1− j, 1]>. One could, in principle represent the matrix as:[
3 −2

1 1

]
=

[
1 + j 1− j

1 1

][
2 + j 0

0 2− j

][
1 + j 1− j

1 1

]−1

To avoid complex numbers on the right hand side, we can represent it as[
3 −2

1 1

]
=

[
1 1

0 1

][
2 −1

1 2

][
1 1

0 1

]−1

The latter will be handy in the sequel.

1.2.2 Linear Autonomous Systems

Recall that a scalar ODE of the form ẋ = ax with initial conditions x(0) = x0

admits a solution of the form x(t) = eatx0. In the vector case, a set of linear

ODEs of the form

ẋ = Ax (1.2)

where x ∈ Rn is a vector and A ∈ Rn×n a matrix, admits a solution in terms

of a matrix exponential :

eA =
∞∑
k=0

Ak

k!

where A0 = I, the Identity matrix. Based on this definition, we can show that
d

dt
(etA) = AetA = etAA, and hence that

x(t) = etAx(0)

is the solution of (1.2). But how can we compute this matrix exponential?
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1.2.3 The matrix exponential

In the n-dimensional case, to calculate the matrix exponential, notice that

e


λ1 0 0

0 . . . 0

0 0 λn


=

 eλ1 0 0

0 . . . 0

0 0 eλn

 , e

 A 0

0 B


=

[
eA 0

0 eB

]

if A and B are square. Hence, if A is diagonalizable,

eA = eVΛV−1

= VeΛV−1 = Vdiag{eλi}V−1

To see the middle step, expand the matrix exponential in series, using the

definition above:

eVΛV−1

=
∞∑
k=0

(VΛV−1)k

k!

= I + VΛV−1 +
1

2!
VΛV−1VΛV−1 + . . .

= V

(
I + Λ +

1

2!
Λ2 + . . .

)
V−1 = VeΛV−1

Example 1.2. Consider the system ẋ = Ax with

A =

[
−1 3

0 2

]
which has eigenvalues λ1 = −1 and λ2 = 2 and corresponding eigenvectors

[1, 0]> and [−1, 1]>. The matrix V and its inverse are

V =

[
1 −1

0 1

]
, V−1 =

[
1 1

0 1

]
.

In this case, etA can be computed as:

etA = V

[
e−t 0

0 e2t

]
V−1 =

[
e−t e−t − e2t

0 e2t

]
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If A has complex eigenvalues, the above can be written as

eA = e

V

 a −b
b a

V−1

= Ve

 a −b
b a


V−1 = V

[
ea cos b −ea sin b

ea sin b ea cos b

]
V−1

(The last step requires you to expand the exponential in series and collect

terms.)

1.3 Different types of Dynamical Systems

In the beginning of this lecture we discussed how dynamical system models can

describe different phenomena - most of the models were simple low dimensional

systems. In this section we introduce the mathematical notation that will be of

interest in the rest of this lecture course as well as some important facts.

Consider a set of n Ordinary Differential Equations of the form

ẋ1 = f1(x1, . . . , xn)
... (1.3)

ẋn = fn(x1, . . . , xn)

where ˙( ) denotes differentiation with respect to time and the variables x1, . . . , xn

represent the states of a system, e.g. position/velocities in mechanical sys-

tems, concentrations of species in biological systems and populations of species

in an ecological system. We will assume that xi(t) takes real values, i.e.

xi(t) ∈ R where R denotes the set of real numbers. Moreover, we will denote

x = [x1, . . . , xn]
>, in which case x(t) ∈ Rn. Here each fi : Rn → R, i.e. has

domain Rn and takes values in R. We may sometimes restrict the domain of f

to a subset D of Rn, i.e. D ⊆ Rn. In this case we can write f : D → Rn.

System (1.3) can be written in a more compact way as follows

ẋ = f(x) (1.4)

with all differential equations stacked together. This system is autonomous in

the sense that f does not depend on time. The autonomous system (1.4) is
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called linear if f(x) = Ax, where A ∈ Rn×n, i.e. is an n× n matrix with real

entries.

Time-dependent systems (also called ‘nonautonomous’ systems) of the form

ẋ = f(x, t)

have very interesting properties, most of which are beyond the scope of this

course. See the tutorial sheet for an example!

Systems of the form

ẋ = f(x;µ) (1.5)

where µ ∈ Rp is a vector of parameters are of great importance – here we

are asking what is happening to the system (their equilibria and stability) as µ

changes. Bifurcations will be studied in Lecture 7. C24 Perturbation methods

will consider the case where µ ∈ Rp is a small parameter.

Systems of the form

ẋ = f(x,u) (1.6)

where u ∈ Rm is a control input are beyond the scope of this course and are

discussed in ‘C21 Nonlinear Systems’.

Lastly, systems described by maps or difference equations of the form

x 7→ g(x;µ) (1.7)

such as the Mandelbrot set will be studied in Lecture 8. The above equa-

tion means that xk+1 = g(xk;µ), which is the notation we will use in the

sequel.

We note here that while in differential equation theory we are interested in

specific solutions given initial conditions, in dynamical systems we are interested

in the behaviour of families of solutions without actually solving the differential

equations. Geometry will play a key role in the rest of this lecture course.

A solution to either (1.5) or (1.7) is a map from some time interval [0, T ] into

Rn, i.e. x : [0, T ]→ Rn such that

ẋ(t) = f(x(t);µ). (1.8)
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This map can be thought of geometrically as a curve in Rn, as we have seen

in the examples before; the RHS of (1.5) gives the velocity at x(t) and is a

vector tangent to every point on the curve.

Existence and Uniqueness of Solutions

(An aside, not examinable!)

Let us return now to the nonlinear differential equation (1.4). Throughout

these notes we will assume that an initial condition is given at t = 0, which

will be denoted by x(0) = x0, where x0 ∈ Rn.

One question that we have not discussed up to now is whether solutions exist

and are unique. Could something awkward happen?

Example 1.3. ẋ = 1 + x2 has solution x(t) = tan(t + c), but this has a

singularity at every time t such that t+ c = kπ + π/2, k = 0,±1,±2, . . .

Example 1.4. ẋ = 3x2/3 from x(0) = 0 has two solutions: x(t) = 0 and

x(t) = t3, thus solutions exist but are not unique.

What is wrong with (or special about) these systems? Let’s define the Eu-

clidean norm on Rn to be ‖x‖ =
(
x2

1 + . . .+ x2
n

)1/2
.

Definition 1.1. A function f : Rn → Rn is Lipschitz continuous in a region

D if there exists a scalar L > 0 such that for all x,y ∈ D

‖f(x)− f(y)‖ ≤ L‖x− y‖.

In this case L is called the Lipschitz constant of f .

Suppose f is Lipschitz continuous in a region D which contains the initial

condition, with Lipschitz constant L. Let us define D to be a ‘ball’ of radius

δ around x0:

D = {x ∈ Rn : ‖x− x0‖ ≤ δ}

Also, let us assume that for all x ∈ D, the function f(x) is bounded as

follows: ‖f(x)‖ ≤ M . Then ẋ = f(x) with x(0) = x0 has a unique solution

for t ∈ [−ε, ε] as long as 0 < ε < min(1/L, δ/M). Moreover, if y is the
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solution for x(0) = y0 and z is the solution for x(0) = z0 over the time

interval t ∈ [0, T ] then the following holds:

‖y(t)− z(t)‖ ≤ eLT‖y0 − z0‖, for all t ∈ [0, T ].

The above result says that solutions exist and are unique for finite amounts

of time as long as f(x) is Lipschitz continuous; and that solutions for nearby

initial conditions do not grow faster than an exponential rate.

In the two examples discussed above, the function 1 + x2 is not Lipschitz

continuous for all x and the function 3x2/3 is not Lipschitz continuous in any

region D containing x = 0.

For the rest of this lecture course we will assume that solutions exist and are

unique locally, i.e. we will assume that the vector fields are sufficiently smooth

to allow this.

Is it now obvious why the logistic growth model cannot oscillate? If it did,

then at a point on the phase-line there would be two solutions: one going ‘left’

and one ‘right’, which violates uniqueness of solutions.
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2 Equilibria and Stability

As emphasized in the previous lecture, the aim of Dynamical Systems is to

understand how systems of differential equations behave. But you may recall

from the P1 course on Differential Equations, that nonlinear ODEs seldom

have analytic solutions. How is one supposed to understand the properties of

such systems without finding solutions to them?

The aim of Dynamical Systems theory is to obtain qualitative information about

the behaviour of a differential/difference equation model, without solving it.

Questions of interest are, e.g. whether the asymptotic behaviour of the system

is periodic, attracting or chaotic, etc. Most of the analysis in Dynamical

Systems is geometric rather than analytic.

The first idea that needs to be understood concerns the notion of an equilibrium

solution.

2.1 Equilibrium Solutions

Flows

Consider a dynamical system of the form

ẋ = f(x) (2.1)

where x(t) ∈ Rn. An equilibrium solution of this system is a solution x∗ ∈ Rn

which is constant - i.e. ẋ∗ = 0. Other names for x∗ are ‘fixed point’, ‘stationary

point’, ‘rest point’, ‘critical point’ and ‘steady-state’. This necessarily means

that

f(x∗) = 0

which is a set of algebraic relationships in the elements, x∗i , i = 1, . . . , n,

of x that can be solved either analytically or numerically. Note that these

relationships will be nonlinear, so sometimes root finding methods need to be

used. Because the equations are nonlinear, several isolated solutions x∗ may

exist. At all of these points, the flow is zero (‘everything stops there’) so

they are interesting points at which to consider the asymptotic behaviour of

solutions (i.e. as time goes to infinity).
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For 1-D systems, both the equilibria and their behaviour are easy to understand

– recall the logistic equation from Lecture 1. Higher-dimensional systems may

have a much richer behaviour around their equilibria as we have already seen.

How can we understand this behaviour?

Maps

In the case of a difference equation

xk+1 = F(xk)

the equilibrium solutions are, again, those that do not change under the discrete

update law, i.e. x∗ ∈ Rn needs to satisfy

x∗ = F(x∗)

This is another algebraic set of equations which can be solved using root-

finding algorithms. However, it may seem to be more difficult to understand

the geometric properties of discrete-time dynamical systems as solutions ‘jump’

from one point to the next under the map F : Rn → Rn. This is why even the

simplest one-dimensional system can exhibit quite an exotic behaviour.

2.2 Stability

Once the equilibria are found, the next question to ask is whether they are sta-

ble. We consider here the case of flows – the case of maps is very similar.

Stability of flow equilibria

An equilibrium solution x∗ is stable, if (roughly speaking) system evolutions

with initial conditions near to x∗ stay close to x∗ for all times; and asympotically

stable if they don’t just stay close, but converge to x∗ as t→∞.

Definition 2.1. x∗ is said to be stable if, given ε > 0, there exists a δ =

δ(ε) > 0 such that any other solution y(t) of (2.1) satisfying |y(0)− x∗| < δ

then |y(t) − x∗| < ε for t ≥ 0. Otherwise, it is called unstable. x∗ is said

to be asymptotically stable if it is stable and if there is a b > 0 such that if

|y(0)− x∗| < b then limt→∞ |y(t)− x∗| = 0.
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Figure 9: Stability (A) and Asymptotic Stability (B).

Note that the ‘for all ε > 0 there exists a δ > 0’ formulation is very common

in topology and dynamical systems. It is a ‘game’ between you, that is trying

to show stability, and someone else – an opponent. (S)he gets to pick ε and

you have to find a δ (which may depend on ε) so that a trajectory that starts

a distance δ from the equilibrium stays within a distance ε of it. Therefore the

solution is allowed to move away from the equilibrium, but not too far.

Lastly, an equilibrium x∗ is said to be exponentially stable if x∗ is asymptotically

stable and there exist α, β, δ ∈ (0,∞) such that if ‖y(0) − x∗‖ < δ then

‖y(t)− x∗‖ ≤ αe−βt‖y(0)− x∗‖ for t ≥ 0.

2.3 Linear Systems

Before we consider the case of nonlinear systems, let us first consider the case

of a linear system of the form

ẋ = Ax
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The 2× 2 case

2.3.1 Uncoupled Case

In the uncoupled case,

ẋ1 = α1x1

ẋ2 = α2x2

the differential equations can be solved directly to give

x1(t) = eα1tx1(0)

x2(t) = eα2tx2(0)

Where do trajectories lie? A simple calculation reveals that they satisfy

x1 = cx
α1/α2

2

The phase-plane in this case is a picture of these curves on the x1, x2 plane;

we use arrows to denote the direction of motion as time progresses. The

equilibrium point, is (of course) the origin, and depending on the values of α,

we can argue whether solutions on the axes approach or leave the origin; the

rest of the phase-plane can then be filled by trajectories.

Example 2.1. For the case

ẋ1 = −x1

ẋ2 = 2x2

the trajectories satisfy y = k/x2 (for x = x1 and y = x2). The phase portrait

is shown in Figure 10.

2.3.2 Coupled Case

In the coupled case, one may consider the 2×2 linear autonomous system:

ẋ1 = ax1 + bx2

ẋ2 = cx1 + dx2
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Figure 10: The phase plane of a decoupled system.

which we can write as ẋ = Ax with

A =

[
a b

c d

]

Let us find the eigenvalues λi of A. These satisfy

λ2 − (a+ d)λ+ (ad− bc) = 0

Denoting by τ the Trace of A, i.e. τ = a+ d (the sum of diagonal elements)

and by D the determinant of A, i.e. D = ad− bc we have that

λ1 + λ2 = τ

λ1λ2 = D

If the eigenvalues are distinct and nonzero, then

x(t) = c1e
λ1tv1 + c2e

λ2tv2

where v1,v2 are the eigenvectors corresponding to the eigenvalues λ1, λ2 of

A.

Consider an initial condition of the form

x(0) = c1v1 + c2v2
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then the solution is of the form

x(t) = etAx(0)

=

(
I + tA +

t2

2!
A2 + . . .

)
(c1v1 + c2v2)

= c1

(
1 + tλ1 +

t2

2!
λ2

1 + . . .

)
v1 + c2

(
1 + tλ2 +

t2

2!
λ2

2 + . . .

)
v2

= c1e
λ1tv1 + c2e

λ2tv2

The following points are worth mentioning:

• If Re (λ) < 0 then the corresponding contribution to the solution is van-

ishing to zero.

• If Re (λ) > 0 then the corresponding contribution to the solution grows

exponentially with time.

• If Re (λ) = 0 then the corresponding contribution is constant with time.

• If Im (λ) 6= 0 then the corresponding contribution spirals around the zero

equilibrium.

• If Im (λ) = 0 then the corresponding contribution does not spiral around

the zero equilibrium.

Moreover, the solution x(t) will tend to one of vi depending on the sign of λ if

real - this can be seen by examining the solution, or by constructing a change

of coordinates y = V−1x to turn ẋ = Ax into the normal form:

ẏ = V−1AVy =

[
λ1 0

0 λ2

]
y

which is uncoupled and therefore the yi axes must be invariant; these axes

correspond to the ith eigenvectors of the system.

We are now ready to classify fixed points in two dimensions:

1. Saddle This happens if λi ∈ R and λ1λ2 < 0. The equilibrium is unstable

and the shape of the saddle is controlled by the eigenvectors vi. The
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normal form of a Saddle is a system with matrix

A =

[
µ 0

0 ν

]
with µ < 0 < ν. The four non-zero trajectories that approach the origin

as t→ ±∞ are called separatices. See Figure 11.

Figure 11: A Saddle.

2. Stable Node This happens if λi ∈ R and λ1 < 0, λ2 < 0. The equi-

librium is (exponentially) stable and the shape of the stable node is con-

trolled by the eigenvectors vi, with v1 controlling the long term behaviour

if |λ1| < |λ2|. The normal forms of a stable node are systems with ma-

trices

A =

[
µ 0

0 ν

]
, A =

[
µ 1

0 µ

]
where µ ≤ ν < 0. See Figure 12.

3. Unstable Node This happens if λi ∈ R and λ1 > 0, λ2 > 0. The

equilibrium is unstable and the shape of the unstable node is controlled

by the eigenvectors vi. The phase plane is the same as in the previous

case, with all the arrows reversed.

4. Centre This happens if Re λi = 0 and Im λi 6= 0. The equilibrium is

‘neutrally stable’. The normal form is a system with the following A

matrix:

A =

[
0 −b
b 0

]
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Figure 12: The different cases of a Stable Node. Left: µ = ν, generic case.

Middle: µ < ν, generic case. Right: Degenerate case.

Trajectories of this system lie on circles of constant radius. See Figure 13.

Figure 13: The different cases of a Centre. Left: b > 0. Right: b < 0.

5. Stable Spiral This happens if Re λi < 0, Im λi 6= 0. The equilibrium is

exponentially stable. The normal form is a system with the following A

matrix:

A =

[
a −b
b a

]
with a < 0. In this case trajectories do not approach the origin in any

eigen-direction. The direction of the spiral can be determined by the

vector field. See Figure 14.

6. Unstable Spiral This happens if Re λi > 0, Im λi 6= 0. The equilibrium

is unstable and the phase plane is the same as in the previous case, with

all the arrows reversed.
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Figure 14: The different cases of a Stable Spiral. Left: b > 0. Right: b < 0.

There are also a number of borderline and degenerate cases which you will

see in the examples paper. Finally, please note that a stable node or spiral is

sometimes called a sink; an unstable node or focus is called a source.

To summarize, the solutions of the three types of systems we have seen

are:

• ẋ =

[
µ 0

0 ν

]
x with x(0) = x0 has solution x(t) =

[
eµt 0

0 eνt

]
x0

• ẋ =

[
µ 1

0 µ

]
x with x(0) = x0 has solution x(t) = eµt

[
1 t

0 1

]
x0

• ẋ =

[
a −b
b a

]
x with x(0) = x0 has solution x(t) = eat

[
cos bt −sin bt

sin bt cos bt

]
x0

Example 2.2. Consider the system

ẋ =

[
0 2

1 −1

]
x

The first step is to change coordinates, so as to bring the system into the

normal form. The eigenvalues of A are 1 and −2, found by solving

λ2 + λ− 2 = 0⇒ (λ− 1)(λ+ 2) = 0

The corresponding eigenvectors are [2 1]> and [−1 1]> respectively and so

A can be written as

[
0 2

1 −1

]
=

[
2 −1

1 1

][
1 0

0 −2

] V−1︷ ︸︸ ︷[
2 −1

1 1

]−1
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Defining new coordinates as y = V−1x, the system becomes diagonal and

therefore the [2, 1]> and the [−1, 1]> directions form two new axes: the former

is an unstable direction (subspace), while the latter is a stable subspace – both

are invariant. The phase portrait for this system is shown in Figure 15.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x
2

A = [0, 2; 1 −1]

Figure 15: The phase plane of the system in Example 2.2.

Note that the solution can be written as

x(t) =

[
2 −1

1 1

][
et 0

0 e−2t

][
1/3 1/3

−1/3 2/3

]
x(0)

=

[
2/3et + 1/3e−2t −2/3e−2t + 2/3et

−1/3e−2t + 1/3et 1/3et + 2/3e−2t

]
x(0)

Maps

In the case of maps, a linear discrete-time system takes the form (see Examples

paper)

wk+1 = Awk
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where A ∈ Rn×n. In the examples paper you will develop the stability condi-

tions for the case of maps.

2.4 Nonlinear Systems

Let us now turn our attention to (2.1). An approximation of the solution of

(2.1) at a point near x∗ can be obtained by linearization, assuming that f is

differentiable. Let x = x∗ + w. Then

ẋ = ẋ∗ + ẇ = f(x∗) +Df(x∗)w +O(‖w‖2)

where Df is the ‘gradient’ of f , i.e. whose (i, j) element is ∂fi
∂xj

and ‖ · ‖ is a

norm on Rn. The above simplifies to

ẇ = Df(x∗)w +O(‖w‖2)

For solutions very close to x∗, we consider only the linear system

ẇ = Df(x∗)w , Aw (2.2)

and the stability of the solution w = 0. Recall that the solution of (2.2) is

w(t) = eDf(x∗)tw(0)

and so w(t) is asymptotically stable if all eigenvalues of Df(x∗) have negative

real parts.

The question of how the stability of w = 0 in (2.2) is related to the stability

of x = x∗ in (2.1) is answered by the following theorem:

Theorem 2.2. Suppose all eigenvalues of Df(x∗) have negative real parts.

Then the equilibrium solution x = x∗ of (2.1) is asymptotically stable.

In fact there is a special name for an equilibrium x∗ with the property that the

linearization about x∗ is a linear vector field with eigenvalues with non-zero

real parts:

Definition 2.3. (Hyperbolic Equilibrium) Let x = x∗ be an equilibrium of

ẋ = f(x). Then x∗ is called a hyperbolic fixed point if none of the eigenvalues

of Df(x∗) have zero real part.
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Roughly speaking, if an equilibrium is hyperbolic then the behaviour of the

nonlinear system and the linearized system close to the equilibrium is very

similar (‘topologically equivalent’). Therefore, hyperbolic equilibria can be

classified according to the eigenvalues of Df(x∗).

Therefore, a simple way of understanding the properties of a vector field lo-

cally is to linearize the system about all the equilibria, analyze their behaviour

separately, and draw the phase plane of the nonlinear system – unless an equi-

librium is non-hyperbolic. In that case, not much can be said locally around

that point – we will talk about this case more in Lecture 3.

Example 2.3. Consider the system

ẋ = y

ẏ = x− x3 − γy, γ ≥ 0

The equilibria of the system are:

(x∗, y∗) = (0, 0), (±1, 0)

The Jacobian of the nonlinear dynamics is[
∂f1/∂x ∂f1/∂y

∂f2/∂x ∂f2/∂y

]
=

[
0 1

1− 3x2 −γ

]

The eigenvalues associated with the equilibrium (0, 0) are λ1,2 =
−γ±
√
γ2+4

2 ,

hence for γ ≥ 0 this equilibrium is unstable. The eigenvalues associated with

the equilibrium (±1, 0) are λ1,2 =
−γ±
√
γ2−8

2 , hence for γ > 0 these equilibria

are asymptotically stable, while for γ = 0 these equilibria are stable in the

linear approximation.

As we can see, when γ = 0 two of the equilibria become non-hyperbolic and the

behaviour of the system close to them is different to that of the linearization.

Later on in this course, we will consider what happens as parameters, such as

γ in the example above, change: we will introduce the notion of bifurcation

which describes how the behaviour close to non-hyperbolic solutions changes

with parametric changes.
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Figure 16: The phase plane of the system in Example 2.3.
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3 Invariant manifolds

In this lecture we will consider further the phase-space properties of linear

and nonlinear systems and concentrate on the case of non-hyperbolic equilib-

ria.

3.1 Linear Systems: Stable, Unstable and Centre Subspaces

Recall that the behaviour of solutions of a linear system

ẇ = Aw (3.1)

where w ∈ Rn and A ∈ Rn×n depends on the eigenvalues of A. We will

denote

Re λ < 0, λS1 , λ
S
2 , . . . , λ

S
s ,

Re λ > 0, λU1 , λ
U
2 , . . . , λ

U
u ,

Re λ = 0, λC1 , λ
C
2 , . . . , λ

C
c ,

with s + u + c = n. The eigenvectors corresponding to each eigenvalue will

be denoted by uS1 , . . . ,u
S
s etc. Recall also that the solution to (3.1) from an

initial condition of the form

w(0) = c1u1 + . . .+ cnun

is

w(t) = c1e
λ1tu1 + . . .+ cne

λntun

The solution of (3.1) can then be written as

w(t) =

,wS(t)︷ ︸︸ ︷
s∑
i=1

cSi w
S
i (t) +

,wU (t)︷ ︸︸ ︷
u∑
i=1

cUi wU
i (t) +

,wC(t)︷ ︸︸ ︷
c∑
i=1

cCi wC
i (t)

where wS
1 (t) = eλ

S
1 tuS1 etc. The subspace of solutions wS(t) is a linear com-

bination of wS
i which span a subspace of the phase-space corresponding to

Re λ < 0; we call this the stable subspace ES. In a similar fashion, we can

define EU and EC .



33 3.1 Linear Systems: Stable, Unstable and Centre Subspaces

Consider now a change of coordinates in the original system, so that

w = Tz, z =

 zS

zU

zC


Then we have that

ż = T−1ẇ = T−1Aw = T−1ATz

If we ensure that T−1AT is of the form

T−1AT =

 AS 0 0

0 AU 0

0 0 AC


where AS has eigenvalues with negative real part, AU eigenvalues with positive

real part and AC eigenvalues with zero real part, then we can write

żS = ASzS

żU = AUzU

żC = ACzC

What the above says is that any solution that starts in ES, EU or EC at time

t = 0 will remain in ES, EU or EC respectively for all t ∈ R. We say that

these spaces are invariant with respect to the flow etA. This means that the

invariant subspaces divide the phase-space in smaller parts, each of which is

invariant. It is also possible to consider the dynamics of the system restricted

to each of these subspaces. The centre subspace is of particular importance

but we will not dwell on it further here.

Example 3.1. Consider the system

ẋ =

 −3 0 0

0 3 −2

0 1 1

x

This system is block-diagonal and hence the eigenvalues are the eigenvalues of

the blocks: λ1 = −3, λ2,3 = 2± j with eigenvectors [1 0 0]>, [0 1± j 1]>.
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The solution (see Lecture 1) is

x(t) =

 e−3t 0 0

0 e2t(cos t+ sin t) −2e2t sin t

0 e2t sin t e2t(cos t− sin t)

x(0)

What does the phase-space look like? See Figure 17.

x1

, x2,x3

Figure 17: The phase space of the system in Example 3.1.

Example 3.2. Consider the system

ẋ =

 λ 1 0

0 λ 0

0 0 γ

x

with λ < 0 and γ > 0. The eigenvalues of the matrix A are λ (repeated)

and γ. This is a degenerate case, i.e., there are only 2 eigenvectors, one

corresponding to γ and one to λ. The unstable subspace is therefore the x3

axis and the x1, x2 plane is the stable subspace. The phase portrait for this

system is shown in Figure 18.

Example 3.3. Consider the system

ẋ =

 0 −1 0

1 0 0

0 0 2

x
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Figure 18: The phase space of the system in Example 3.2.

with eigenvalues λ1,2 = ±j and eigenvectors [1 −j 0]> and [1 j 0]>

respectively and λ3 = 2 with eigenvector [0 0 1]>. The unstable subspace is

therefore the x3 axis and the x1, x2 plane is the centre subspace. The phase

portrait for this system is shown in Figure 19 - note how solutions lie on the

cylinders x2
1 + x2

2 = c2.

In the above examples we see that we can make the following predictions:

lim
t→∞

wS(t) = 0, lim
t→−∞

wU(t) = 0

For the Centre subspace, no such limit can be written directly – in the above

example the solutions in EC are bounded, but this is not true in general.

Consider, for example the simple case of

A =

[
0 0

1 0

]
(3.2)

See Figure 20 for the phase plane of this system. It can be seen that solutions

nearby the equilibrium can become unbounded.
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Figure 19: The phase space of the system in Example 3.3.

Figure 20: The phase plane of A in Equation 3.2.

3.2 Nonlinear Systems: Local theory and Invariance

Let us now return to the nonlinear system

ẋ = f(x)
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which can be linearized about an equilibrium of interest as we discussed in

Lecture 2, to give

ẇ = Df(x∗)w +O(‖w‖2)

where x = x∗ + w. The procedure of diagonalization that was discussed at

the end of the previous section can still be performed but this will result in the

following transformed system:

żS = ASzS + RS(z)

żU = AUzU + RU(z)

żC = ACzC + RC(z)

The question is whether the remainder terms RS, RU and RC , which are

nonlinear functions of z would affect the invariance of the stable, unstable

and centre manifolds. A “Manifold” here means a ‘locally smooth surface’ in

Rn. Also, we would like to know whether topologically, the local behaviour of

the equilibrium of the nonlinear system is the same as the one of the linear

system.

The Hartman-Grobman Theorem is a central result in Dynamical Systems

and states that in the case of hyperbolic equilibria, there exists a bi-continuous

function H of a region containing the equilibrium (of the phase-space of the

nonlinear system) to a region containing the origin (of the phase-space of the

linearization) such that trajectories are mapped exactly, and parameterization

of time is preserved.

Finding the transformation as well as what the invariant subspaces look like for

nonlinear systems is beyond the scope of the course. Please see the reference

books if this interests you.

Example 3.4. Figure 21 shows the two phase planes for the nonlinear system

ẋ1 = −x1

ẋ2 = x2 + x2
1
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x
1

x
1

x
2 x

2

Figure 21: The phase plane of the nonlinear system in Example 3.4 (left) and

its linearization about the zero equilibrium (right).

3.3 Non-hyperbolic equilibria

We now turn our attention to the case of non-hyperbolic equilibria and the

various cases that may emerge. Recall that if the equilibrium is non-hyperbolic,

the equilibrium of the original nonlinear system may or may not be a center.

There are several ways to decide whether it is or not.

Transformation to polar coordinates

The first is to convert the dynamics in polar coordinates. Consider a 2-D

autonomous system of the form

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

and let (r, θ) be a new coordinate system with x1 = r cos θ and x2 = r sin θ.

Then the above system can be rewritten using the following transformations

ṙ =
x1ẋ1 + x2ẋ2

r
, θ̇ =

x1ẋ2 − x2ẋ1

r2

(See the Examples paper.) Once the system is transformed in these coordi-

nates, it is easy to determine whether r (the ‘radius’) grows or shrinks, or stays

constant.
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Example 3.5. Consider the system

ẋ = −y − xy

ẏ = x+ x2

For r > 0 we have

ṙ =
xẋ+ yẏ

r
=
−xy − x2y + xy + x2y

r
= 0

and

θ̇ =
xẏ − yẋ
r2

=
x2 + x3 + y2 + xy2

r2
= 1 + x

Hence in a neighbourhood of the origin, the 0 equilibrium is a nonlinear centre.

Symmetry

We say that a 2-dimensional nonlinear system ẋ = f(x) is symmetric with

respect to the x1 axis, if it is invariant under the transformation (t, x2) →
(−t,−x2) and vice-versa.

If a system is symmetric with respect to one of the axes, and if the origin

is a centre for the linearization, then the origin is a centre for the nonlinear

system.

Example 3.6. Consider the system

ẋ1 = x2 − x3
2 , f(x1, x2)

ẋ2 = −x1 − x2
2 , g(x1, x2)

This system has a linear centre at the origin and is symmetric with respect to

the x1 axis. Note that

f(x1,−x2) = −f(x1, x2)

g(x1,−x2) = g(x1, x2)

and so

dx1

d(−t)
= f(x1,−x2)

d(−x2)

d(−t)
= g(x1,−x2)

Hence the origin is a nonlinear centre.
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Conservative systems

If there exists an energy-like function V (x) which is ‘preserved’ along the

trajectories of the system then the system is called conservative. The exact

condition it needs to satisfy is for there to exist a non-constant function V :

Rn → R with
dV (x)

dt
= 0. If the system has an isolated equilibrium at x = x∗

(i.e., there are no other equilibria in a neighbourhood around it) and one can

construct such a V (x) with a local minimum or maximum at x∗ then there is

a region around the equilibrium which contains a closed orbit.

Constructing a V (x) is sometimes easy, e.g., in the case of

ẋ1 = x2

ẋ2 = f(x1)

one can integrate the following expression

−f(x1)ẋ1 + x2ẋ2 = 0

See the examples paper for more details and an example.

Another case where constructing a V (x) is easy is for the type of system

ẋ1 = f(x1)g1(x2)

ẋ2 = f(x2)g2(x1)

It is easy to show that

g2(x1)

f(x1)
ẋ1 −

g1(x2)

f(x2)
ẋ2 = 0

which can be integrated to yield V (x).

Example 3.7. Consider the system

ẋ1 = x1 − x1x2

ẋ2 = −x2 + x1x2

Linear analysis reveals that (0, 0) is a saddle point and (1, 1) is a linear cen-

tre. To show that (1, 1) is a nonlinear centre we construct a function V (x),
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recognizing that

ẋ1 = x1(1− x2)

ẋ2 = x2(−1 + x1)

We have
−1 + x1

x1
ẋ1 −

1− x2

x2
ẋ2 = 0

which can be integrated to give

x1 + x2 − ln(x1x2) = c

where c is a constant. It can be easily shown that (1, 1) is a local minimum of

the function x1 + x2 − ln(x1x2) and therefore (1, 1) is a nonlinear centre.

The function V (x) is very important in Dynamical Systems and will be the

topic of discussion of the next lecture.
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4 Lyapunov functions

Lyapunov functions and Lyapunov methods can be used to determine the sta-

bility of equilibria of dynamical systems even when linearization fails to conclude

this; and provide a clearer picture about the far-from-equilibrium behaviour of

the system, which is of interest in several cases.

The idea behind Lyapunov functions is the following. Suppose there is a region

U around the equilibrium, whose boundary is such that the vector field always

points inwards or is tangential to it. Then, obviously, trajectories cannot escape

it. See Figure 22.

x*

Figure 22: The Lyapunov function concept – the vector field at the boundary

of U .

Suppose that once they enter this region U , there is another surface whose

boundary has the same property, all the way down to the equilibrium – this is

illustrated in Figure 23.

In two-dimensional systems, recall that the gradient of a function V , ∇V is a

vector that is always perpendicular to level sets of V and points in the direction

of increasing V – see Figure 24. So our requirement that the vector field either

points inward or is tangent to the level sets is

∇V (x) · f(x) ≤ 0

Note also that the left hand side is equal to
dV

dt
. We are now ready to formulate
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x*    

Figure 23: Level sets of the function V .

Lyapunov theory.

x*

Figure 24: ∇V and the region U .

4.1 Lyapunov Functions

Here is Lyapunov’s theorem - the concept is shown pictorially in Figure 25.
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Theorem 4.1. Consider a nonlinear system of the form

ẋ = f(x)

and let x∗ be an equilibrium point (recall that this means that f(x∗) = 0). Let

V : D → R be a continuously differentiable function, defined on a neighbour-

hood D of x∗ such that

(i) V (x∗) = 0 and V (x) > 0 if x 6= x∗.

(ii) V̇ (x) = ∇V (x) · f(x) ≤ 0 in D − {x∗}.

Then x∗ is stable. If moreover

(iii) V̇ (x) < 0 in D − {x∗}

then x∗ is asymptotically stable.

The function V (x) is called a Lyapunov function; if D = Rn then x∗ is globally

asymptotically stable, if V (x) is in addition radially unbounded.

Example 4.1. Consider the dynamical system

ẋ = y

ẏ = −x+ εx2y

Linearization around the equilibrium (0, 0) reveals a centre (a non-hyperbolic

equilibrium) and hence we resort to Lyapunov theory to show stability.

Consider V (x, y) = 1
2(x2 +y2). Condition (i) in the theorem above is obviously

satisfied, and

V̇ = xẋ+ yẏ = xy + εx2y2 − xy = εx2y2

Therefore, (0, 0) is globally stable for ε < 0. (In the next lecture we will discuss

what tools will allow us to conclude global asymptotic stability in this case).

Example 4.2. Consider the system

ẋ1 = −2x2 + x2x3

ẋ2 = x1 − x1x3

ẋ3 = x1x2
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  ( ) ( ) 0 in \ {0}

then 0 is asymptotically stable.

V(x)

nR

Figure 25: The main property of the Lyapunov function: the value of the

function decreases along system trajectories; level curves provide regions that

cannot be escaped.

The origin is an equilibrium point for this system, which is a linear centre, i.e.

non-hyperbolic. To find a Lyapunov function, consider a function of the form

V (x) =
1

2

(
c1x

2
1 + c2x

2
2 + c3x

2
3

)
Computing V̇ we get

V̇ =
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2 +

∂V

∂x3
ẋ3

= (c1 − c2 + c3)x1x2x3 + (−2c1 + c2)x1x2

and therefore if we choose c2 = 2c1 > 0 and c3 = c1 we have a Lyapunov

function and the equilibrium is stable. We can actually go a step further and

construct a first integral for the system, of the form

V (x) =
1

2

(
x2

1 + 2x2
2 + x2

3

)
for which V̇ = 0.
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Example 4.3. Consider a simple model of a jet engine with a controller:

ẋ1 = −x2 + 1.5x2
1 − 0.5x3

1

ẋ2 = 3x1 − x2

The origin is an equilibrium point for this system and is linearly stable. How

does the system behave further away from the origin? A quadratic Lyapunov

function does not exist for this system. A quartic function of the form

V (x) = c1x
2
1 + c2x

2
2 + c3x1x2 + c4x

3
1 + . . .+ ckx

4
2

does however exist! This can be computed using recently developed tools –

indeed, constructing Lyapunov functions was more of an art until about 10

years ago. Figure 26 shows the level curves of this Lyapunov function, which

shows global stability of the equilibrium.

, x1

, x2

Figure 26: The level curves of the Lyapunov function which show global sta-

bility of the Jet engine model.

If the equilibrium of the original system ẋ = f(x) is not at the origin, but is at

x∗, a translation of coordinates z = x− x∗ will ensure that the equilibrium of

the new system ż = f(z + x∗) has its equilibrium at z = 0. Stability analysis

of x∗ can then proceed by analyzing the stability of the zero equilibrium of the

new system.
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In the same way that Lyapunov theory can show stability of an equilibrium, it

can be used to show instability: this is beyond the scope of this course.

4.2 Vector fields possessing an integral

Consider a nonlinear system of the form

ẋ = f(x)

We say that this vector field has an integral I(x) (a scalar-valued function)

if
d

dt
I(x) =

dI(x)

dx
ẋ =

dI(x)

dx
f(x) = 0

This means that I(x) is a conserved quantity and the dynamics of the system

evolves on the level sets of I(x) - we have seen this in Example 4.2.

Example 4.4. Consider the pendulum equations:

q̇ = p

ṗ = −g
`

sin q

This system has a conserved quantity, total energy, given by

E =
1

2
p2 − g

`
cos q

Indeed,

Ė = pṗ+
g

`
q̇ sin q = −pg

`
sin q +

g

`
p sin q = 0.

Example 4.5. Consider the unforced duffing oscillator

ẋ = y

ẏ = x− x3 − δy, δ ≥ 0

Let us consider the system for the case δ = 0. In this case, the system has a

first integral of the form
y2

2
− x2

2
+
x4

4
.

Level curves of this function are trajectories of different ‘energy’ - if we draw

them we can understand the structure of the dynamics far away from the

equilibria.
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Systems with vector fields possessing an integral are examples of Hamiltonian

systems, which we study next.

4.3 Hamiltonian Systems

Systems of the form

ṗ = f(p,q)

q̇ = g(p,q)

where p,q ∈ Rn, for which there exists a twice-differentiable function H(p,q)

defined on D ⊆ R2n such that

f(p,q) =
∂H(p,q)

∂q

g(p,q) = −∂H(p,q)

∂p

are called Hamiltonian Systems with n degrees of freedom. Note that all

Hamiltonian systems are conservative. In the case of n = 1, the equilibria of

the system are the critical points of H(p, q).

Several conclusions can be drawn about the stability of those equilibria, de-

pending on the properties of H. For example, if (p∗, q∗) is an equilibrium

and H(p, q) > 0 in a domain around the equilibrium, then this equilibrium is

stable.

Newtonian systems of the form

ẍ = f(x)

can be written as Hamiltonian systems by adding the ‘potential’ and ‘kinetic’

energy components. For example this system can be written as

ẋ = y

ẏ = f(x)

in which case

H(x, y) =
y2

2
−
∫ x

x0

f(s)ds.
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4.4 Gradient Systems

Suppose D ⊆ Rn and suppose there exists a twice-differentiable function V (x)

such that

ẋi = −∂V
∂xi

Such a system is called a gradient system.

Equilibrium points of gradient systems correspond to critical points of V (x);

at all other points, system trajectories are perpendicular to level sets of V .

If a x∗ is a strict local minimum of V (x) then V (x) − V (x∗) is a Lyapunov

function for x∗, showing that it is asymptotically stable. If x∗ is a strict local

maximum of V (x) then the equilibrium is unstable.

Example 4.6. The system

ẋ = −4x(x− 1)(x− 0.5)

ẏ = −2y

is a gradient system with V (x, y) = x2(x − 1)2 + y2. Figure (27) shows the

level sets of V (x, y) and the trajectories of the system.

4.5 A relationship between Gradient and Hamiltonian Systems

The system

ẋ = f(x, y) (4.1)

ẏ = g(x, y)

is orthogonal to

ẋ = g(x, y) (4.2)

ẏ = −f(x, y)

in the sense that trajectories of one are orthogonal to trajectories of the other.

They have the same equilibria and in fact, centres of (4.1) correspond to

nodes of (4.2), saddles of (4.1) correspond to saddles of (4.2), and foci of

(4.1) correspond to foci of (4.2).
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Figure 27: The level curves of V (x, y) in Example 4.6.

Moreover, if (4.1) is a Hamiltonian system with f =
∂H

∂y
and g = −∂H

∂x
then

(4.2) is a gradient system and vice versa.
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5 Asymptotic Behaviour

So far we were interested in the local behaviour of nonlinear systems; we now

turn our attention to their global behaviour.

Let us assume that

ẋ = f(x) (5.1)

has a solution φ(t,x) on a domain D, through the point x0 = x(0) ∈ D. This

solution is a trajectory - this is essentially what we have been drawing on the

phase plane in the previous lectures, i.e. the curve

Γx0
= {x ∈ D, such that x = φ(t,x0), t ∈ R}

What could ever be the long-term behaviour of these trajectories?

To understand this, we need to define two notions: the α and ω limit points

of the trajectory φ(t,x):

Definition 5.1. A point p ∈ D is called an ω limit point of the trajectory

φ(t,x) if there exists a sequence of times, {ti}, ti →∞ such that

lim
i→∞

φ(ti,x)→ p

We denote this point ω(x). α limit points are defined in a similar way, but

now the sequence {ti} is such that ti → −∞.

The α limit set of a trajectory is the set of all α limit points. Similarly, we can

define the ω limit set.

Example 5.1. Any equilibrium point x∗ is its own α and ω limit point. If

a trajectory φ(t,x) has a unique ω limit point x∗, then x∗ is an equilibrium

point.

Example 5.2. Consider a saddle point equilibrium. The equilibrium is an ω

limit point for any point on the stable manifold and an α limit point for any

point on the unstable manifold. In this example, it is obvious that no time

sequence {ti} needs to be taken.

The ω and α limit sets are not restricted to equilibria. If a point p is in the

ω limit set of a trajectory and ṗ 6= 0, then this trajectory is a closed orbit.
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D

Figure 28: A trajectory which approaches an ω limit point. Here a time

sequence is not important.

We will consider limit orbits in the next lecture - the time-sequence is now

important when defining ω and α limit points.

Example 5.3. Consider a globally attracting closed orbit; trajectories not start-

ing on it approach it, but time sequences are important as without them we

cannot have a sequence of points that tend to a limit point p on the orbit.

Note that in this case, limt→∞φ(t,x) 6= p. The limit cycle is the ω limit set

of p. If the closed orbit was unstable, we could similarly define the α limit set.

If a region M is positively invariant and closed and bounded, then the ω limit

set of any point x ∈ M is non-empty (trajectories need to go somewhere!).

Also, ω(x) is invariant itself.

We now discuss notions of stability of attracting sets and ‘trapping’ regions.

Definition 5.2. An invariant set A ⊂ D is attracting if there is some neigh-

bourhood U of A which is positively invariant and all trajectories starting in

U tend to A as t→∞.

Example 5.4. A stable node or focus is the ω limit set of any trajectory that
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p

Figure 29: A stable closed orbit and the need for time sequences when defining

the limit set.

starts in a neighbourhood around that equilibrium, i.e., that equilibrium is an

attractor of the system (5.1). A saddle point, however, is not an attractor.

Example 5.5. Consider the system

ẋ = −y + x(1− x2 − y2)

ẏ = x+ y(1− x2 − y2)

Changing to polar coordinates, we have

ṙ = r(1− r2)

θ̇ = 1.

The origin is an equilibrium point of the system, which is actually unstable.

Moreover, ṙ < 0 if r > 1; ṙ > 0 if r < 1 and ṙ = 0 for r = 1, i.e. the unit

circle will be a trajectory from (r, θ) = (1, 0), which is called a limit cycle.

This trajectory is actually stable and is an attractor – it is the ω-limit set of

any point in R2 apart from the origin. See Figure 30.

In the above example, the set U is essentially the whole of R2 minus the zero

equilibrium. The set U is called a trapping region: constructing such regions

can be done using Lyapunov functions.
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Figure 30: A stable limit cycle, which is an attractor of the system in Example

5.5.

5.1 LaSalle’s invariance principle

Indeed, finding a Lyapunov function is equivalent to finding a trapping region:

a region is trapping if along its boundary the vector field is pointing inwards

or is tangent to it.

Definition 5.3. The domain or basin of attraction of an attracting set A is

the union of all trajectories forming a trapping region of A.

Example 5.6. Consider, for example, the duffing oscillator. The basins of

attraction of the two stable equilibria are essentially defined by the stable

manifold of the saddle point at the origin.

We are now ready to discuss LaSalle’s invariance principle.

Let ẋ = f(x) with x ∈ Rn and suppose D ⊂ Rn is a positively invariant set.

Suppose the boundary of D is differentiable and D has non-empty interior.

This means that D is a trapping region.

Suppose now there exists a V (x) which satisfies V̇ ≤ 0 on D and consider the
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Figure 31: The domain of attraction of an equilibrium point of the Duffing

oscillator.

following two sets:

E = {x ∈ D such that V̇ (x) = 0}

and

M = {the union of all trajectories in E that are positively invariant}

LaSalle’s invariance principle then states that for all x ∈ D, all trajectories

starting at x tend to M as t→∞.

LaSalle’s invariance principle assumes the existence of a positively invariant set

D. At this point, note that V (x) is not required to be positive definite! If

V (x) is positive definite, then this (Lyapunov) function can provide D (level

sets of V (x) will count towards that). However some times D is defined by

constructing a trapping region directly – see the Examples paper.

Example 5.7. Consider for example the Duffing equation

ẋ = y

ẏ = x− x3 − γy, γ > 0.

and the following function

V (x, y) =
y2

2
− x2

2
+
x4

4



Asymptotic Behaviour 56

which satisfies

V̇ = −γy2.

The set E consists of all points with y = 0, but only the points x = 0,

x = 1 and x = −1 are invariant. The level set V = c with c large is the

boundary of a positively invariant region and that region contains these three

points. Therefore, using LaSalle, all trajectories converge to one of these three

equilibria. See Figure 32.

M

Figure 32: The asymptotic stability of the (±1, 0) equilibria of the Duffing

oscillator.

5.2 The Poincaré Bendixson Theorem

Beyond limit cycles, there are several other ‘exotic’ attractors in dynamical

systems, that we will consider in Lecture 8. The question we now consider is

what kind of attractors we expect to have on the phase plane, i.e. in R2.

The Poincaré Bendixson theorem considers two-dimensional vector fields and

allows us to determine completely and exactly what the asymptotic behaviour

of systems on the plane is, i.e., what attractors there can be on the plane. We

have already seen limit cycles and periodic orbits, and we will study them in

more detail in the next lecture, but what else can there be? Let’s first consider

an example.
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Example 5.8. The Hamiltonian system

ẋ = y

ẏ = x+ x2

has a Hamiltonian

H(x, y) =
y2

2
− x2

2
− x3

3
and therefore the solution curves are defined by

y2 − x2 − 2

3
x3 = c.

As we discussed in the previous lecture, these solution curves are trajectories of

the system, and therefore we can plot the phase portrait of the system easily.

In particular, the curve

y2 = x2 + 2x3/3

goes through the origin and the point (−1.5, 0); it corresponds to a trajectory

with the (saddle point) origin as its α and ω limit sets. Such a trajectory,

which starts from the unstable manifold of the saddle and ends on the stable

manifold of the saddle is called a homoclinic connection or orbit. This ‘cycle’

is called a separatix cycle - see Figure 33.

Homoclinic orbits are not the only orbits of this type we have seen in this

lecture course; heteroclinic connections can be seen in Figure 5 in Lecture 1

– there, a heteroclinic connection links two unstable equilibria (corresponding

to the upward equilibrium). Also, the system

ẋ = −2y

ẏ = 4x(x− 1)(x− 0.5)

which is orthogonal to the gradient system we discussed in Example 4.6, is

Hamiltonian and the level curves shown on Figure 27 are trajectories of this

system - the ‘bowtie’ homoclinic orbits around the point (0.5, 0) form a ‘com-

pound separatix cycle’. There are other compound separatix cycles that one

can have on the plane – see Figure 34. Note that all of them consist of a

number of compatibly oriented separatix cycles, each of which is a union of a

finite number of critical points and compatibly oriented separatices.
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Figure 33: A homoclinic connection.

Figure 34: Various compound separatix cycles.

Is this everything that can happen on the phase-plane of a nonlinear system?

The Poincaré Bendixson Theorem is a fundamental result in Dynamical

Systems, and states that the α and ω limit sets of any trajectory of a dynamical
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system on the plane is either a critical point, a cycle, or a compound separatix

cycle.

The Poincaré-Bendixson theorem is as follows:

Theorem 5.4. Let M be a positively invariant region of a vector field, con-

taining only a finite number of equilibria. Let x ∈M and consider ω(x). Then

one of the following possibilities holds:

(i) ω(x) is an equilibrium;

(ii) ω(x) is a closed orbit;

(ii) ω(x) consists of a finite number of equilibria x∗1, . . . ,x
∗
n and orbits γ with

α(γ) = x∗i and ω(γ) = x∗j .

This is a deep theorem and there are several (not so obvious) conclusions from

it. For example, if inside M there are only stable equilibria, then there can

only be one. If there are no equilibria, then there is a closed orbit in it.

Let’s see how the Poincaré-Bendixson is used in practice.

Example 5.9. Consider, again, the unforced Duffing oscillator:

ẋ = y

ẏ = x− x3 − γy, γ > 0.

The level curves of the function V (x, y) = 2y2 − 2x2 + x4 provide positively

invariant regions for the stable equilibria. Using Poincaré Bendixson, the un-

stable manifold of the saddle at the origin must fall into the sinks. The two

cases 0 ≤ δ ≤
√

8 and δ >
√

8 are shown in Figures 35 and 36 below.

Example 5.10. Consider the system

ẋ1 = x1 + x2 − x1(x
2
1 + x2

2)

ẋ2 = −x1 + x2 − x2(x
2
1 + x2

2)

Does this system have a limit cycle? Linearizing about the origin, we obtain

the Jacobian

J =

[
1 1

−1 1

]
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Figure 35: The Duffing oscillator for 0 ≤ δ ≤
√

8.

Figure 36: The Duffing oscillator for δ >
√

8.

which has eigenvalues at 1± j; hence the origin is an unstable spiral.

If we consider the region defined by

V (x1, x2) =
x2

1

2
+
x2

2

2
= c,

where c is large, then

V̇ (x1, x2) = x1ẋ1 + x2ẋ2 = (x2
1 + x2

2)− (x2
1 + x2

2)(x
2
1 + x2

2) = 2c− 4c2 < 0



61 5.2 The Poincaré Bendixson Theorem

defines an invariant region. As there is only one unstable equilibrium point

inside the region, by Poincaré Bendixson the region must contain a stable limit

cycle.
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6 Limit Cycles and Index Theory

In this lecture, we consider periodic solutions of continuous-time systems. In

particular, we are interested in limit cycles - we have already discussed periodic

orbits and separatix cycles in the previous lecture. In essence, a cycle is a closed

solution curve that is not an equilibrium solution of

ẋ = f(x). (6.1)

Definition 6.1. A solution of ẋ = f(x) through x0 is said to be periodic if

there exists a T > 0 such that φ(t; x0) = φ(t + T ; x0) for all t ∈ R. The

minimum such T is called a period of the periodic orbit.

The question of stability of periodic orbits will be discussed at the end of

this lecture. For now, let’s concentrate on ways to show existence (or non-

existence) of periodic orbits.

6.1 Non-existence of Periodic Orbits for 2-D systems

Consider the 2-D system

ẋ = f(x, y) (6.2)

ẏ = g(x, y) (6.3)

with f and g continuously differentiable. The following is an important result

towards establishing existence of periodic solutions:

Theorem 6.2. (Bendixson) If ∂f
∂x+ ∂g

∂y is not identically 0 and does not change

sign on a region D of the phase-plane, then (6.2-6.3) has no closed orbits in

this region.

The proof of this theorem proceeds by contradiction; if there existed such a

closed orbit, then, since

dy

dx
=
dy/dt

dx/dt
=
g(x, y)

f(x, y)

we have that ∮
Γ

f(x, y)dy − g(x, y)dx = 0
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over a closed orbit Γ in D. Using Stoke’s theorem in two dimensions (also

called Green’s Theorem), we obtain∫
S

(
∂f

∂x
+
∂g

∂y

)
dxdy = 0

where S is a ‘capping surface’ in 2-D, i.e., the ‘inside’ of Γ. Obviously, if(
∂f

∂x
+
∂g

∂y

)
6= 0 and does not change sign, there cannot be any closed orbits

in D.

Dulac generalized Bendixson’s criterion into the following theorem:

Theorem 6.3. (Dulac) Let B(x, y) be a continuously differentiable function,

defined on a region D ⊂ R2. If ∂Bf
∂x + ∂Bg

∂y is not identically 0 and does not

change sign on a region D of the phase-plane, then (6.2-6.3) has no closed

orbits in this region.

Example 6.1. Consider

ẋ = y , f(x, y)

ẏ = x− x3 − δy , g(x, y), δ ≥ 0

It is easy to see that
∂f

∂x
+
∂g

∂y
= −δ

and therefore for δ > 0 there are no closed orbits. But what happens for δ = 0?

In that case, the system is Hamiltonian and the behaviour of the trajectories

can be studied directly.

Example 6.2. Consider the following modification to the previous example:

ẋ = y , f(x, y)

ẏ = x− x3 − δy + x2y , g(x, y), δ ≥ 0

A simple analysis reveals that (0, 0) is a saddle and (±1, 0) are sinks for δ > 1

and sources for 0 ≤ δ < 1. It is easy to see that

∂f

∂x
+
∂g

∂y
= −δ + x2

which vanishes when x = ±
√
δ. Obviously, there can be no closed orbits in the

regions of the phase space corresponding to x < −
√
δ, −
√
δ < x <

√
δ and
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Figure 37: Regions within which no limit cycles exist, for δ > 1.

x >
√
δ – see Figure 37. There may however exist orbits that overlap these

regions (see Figure 38) – how can we decide? This can be studied further

using index theory below.

6.2 Gradient Systems

A gradient system is a system of the form ẋ = −∇V with x(t) ∈ Rn and

V : Rn → R – we have studied these systems in Lecture 4. If a system is

gradient, then it has no closed orbits. This is easy to see, since

dV

dt
=
∂V

∂x

dx

dt
= ∇V · ẋ = −‖∇V ‖2 = −‖ẋ‖2

Integrating over a time interval [0, T ],

V (x(T ))− V (x(0)) = −
∫ T

0

‖ẋ‖2dt

If a closed orbit existed, then x(T ) = x(0) and hence the left hand side is

zero; this means that ẋ = 0 for the whole time interval [0, T ], so x(0) is a

fixed point, not an orbit.

6.3 Index Theory

Index theory is a very useful method for deciding far-from-equilibrium behaviour

of a system and is particularly useful for two-dimensional systems.
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Figure 38: Regions within which limit cycles may exist.

It makes use of the fact that a system of the form

ẋ1 = f(x1, x2)

ẋ2 = g(x1, x2)

is such that the vector field
dx2

dx1
=
g(x1, x2)

f(x1, x2)
makes an angle

ϕ(x1, x2) = arctan

(
g(x1, x2)

f(x1, x2)

)
to the x1 axis. Given this angle and a simple closed curve Γ in R2, the index

of Γ, I(Γ) is defined by

I(Γ) =

∮
Γ

dϕ(x1, x2)

2π

See Figure 39.

Here are some properties of the index (See Figure 40):

1. The Index is always an integer – this is because the angle at the beginning

and end of Γ is the same and therefore the variation of ϕ is a multiple of

2π.
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Γ

Figure 39: The Index concept.

Figure 40: Four different vector fields and the index.
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2. If there are no fixed points (equilibria) in the interior of a simple closed

curve Γ then I(Γ) = 0. To see this, cover the interior of Γ with a mesh

and consider the boundary of each cell as an elementary curve γk. Since

there is no fixed point in the interior of Γ, we know that no γk will have

an angle increase – putting everything together we get the result for the

whole Γ.

3. If Γ is a closed orbit of the system then I(Γ) = 1 (this can be easily

checked graphically).

4. Let Γ encircle anticlockwise an isolated fixed point x∗. If x∗ is a saddle

node, then I(Γ) = −1, otherwise I(Γ) = 1. In the case of fixed points,

we also identify I(Γ) with I(x∗).

5. The index of a curve Γ surrounding a number of fixed points x∗1, . . . ,x
∗
n

is

I(Γ) =
n∑
k=1

I(x∗k)

6. The index of a closed trajectory enclosing fixed points x∗1, . . . ,x
∗
n is

I(Γ) =
n∑
k=1

I(x∗k) = 1.

Example 6.3. Consider the system

ẋ1 = x1(3− x1 − 2x2)

ẋ2 = x2(2− x1 − x2)

Does this system have any closed trajectories? First, note that the axes are

trajectories. Let y = (x1, x2). This system has four fixed points:

• y∗1 = (0, 0) unstable node, so I(y∗1) = 1.

• y∗2 = (0, 2) stable node, so I(y∗2) = 1.

• y∗3 = (3, 0) unstable node, so I(y∗3) = 1.

• y∗4 = (1, 1) saddle point, so I(y∗4) = −1.
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Any curve enclosing zero fixed points is not a trajectory. Also, a curve Γ

enclosing only y∗4 is not a trajectory as I(Γ) = 1 and I(y∗4) = −1. Moreover,

a curve Γ enclosing either y∗1 or y∗2 or y∗3 and any combination of them is not

a trajectory as any such curve would need to intersect at least one of the axes,

each of which is a trajectory. Since trajectories cannot intersect, it means that

Γ is not a trajectory. See Figure 41.

x
1

x
2

y1
*

y2
*

y3
*

y4
*

Figure 41: The phase plane of Example 41.

Going back to the Duffing oscillator of Example 6.2, which of the vector fields

in Figure 38 are possible?

6.4 Limit cycles

Limit cycles are isolated periodic orbits. They can be stable or unstable – in

this section we will discuss the concept of orbital stability.

Definition 6.4. A periodic orbit Γ is said to be stable if for every ε > 0 there

is a neighbourhood U of Γ such that for all x ∈ U , the distance between

φ(t,x) and Γ is less than ε. Moreover, Γ is called asymptotically stable, if it

is stable and if for all points x ∈ U we have that this distance tends to zero

as t→∞.
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Recall that a centre consists of a family of periodic orbits. Each periodic

orbit in this family is stable, but not asymptotically stable. In fact, a periodic

orbit

Γ : x = γ(t), 0 ≤ t ≤ T

is asymptotically stable only if∫ T

0

∇ · f(γ(t))dt ≤ 0.

In line with the attractor definitions discussed in the previous lecture, an asymp-

totically stable cycle is referred to as an ω-limit cycle.

For systems on the plane, a limit cycle Γ is a cycle which is the α or ω limit

set of some trajectory of (6.1) other than Γ. If it is the ω-limit set of every

trajectory in the neighbourhood of Γ then it is a stable limit cycle; similarly, if

it is the α-limit set of every trajectory in some neighbourhood of Γ then it is

an unstable limit cycle. Lastly, it may happen that Γ is the α-limit set of one

trajectory and the ω-limit set of another – in that case Γ is called a semi-stable

limit cycle.

Example 6.4. Consider the system

ẋ = −y + x(1− x2 − y2)2

ẏ = x+ y(1− x2 − y2)2

Transforming this into polar coordinates we get:

ṙ = r(1− r2)2

θ̇ = 1

It is obvious that for r < 1, ṙ > 0 and for r > 1, again, ṙ > 0, but at r = 1,

ṙ = 0! In this case, we have a semi-stable limit cycle. See Figure 42.

The most important tool for studying stability of limit cycles is the so-called

Poincaré Map.

6.5 The Poincaré Map

Suppose Γ is a periodic orbit of (6.1) through a point x0, and Σ is a hyperplane

perpendicular to Γ at x0. Consider now any point x ∈ Σ close to x0, and the
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x

y

Figure 42: A semi-stable limit cycle.

solution φ(t,x). This solution will cross Σ several times – denote the point

on Σ where φ(t,x) will pierce Σ by P(x) and so on. The mapping

x 7→ P(x)

is called a Poincaré Map. See Figure 43.

The map P has several nice properties, the most important of which is that

equilibria of P correspond to the periodic orbits of (6.1). There are several

other important properties of Poincaré Maps which are beyond the scope of

this course.

Example 6.5. Recall from Example 5.5 that the system

ẋ = −y + x(1− x2 − y2)

ẏ = x+ y(1− x2 − y2)

can be written in polar coordinates as

ṙ = r(1− r2)

θ̇ = 1.
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Figure 43: The Poincaré Map concept.

The limit cycle is at r = 1; in fact this is a stable attractor for the whole of

R2 minus the origin. The first equation can be solved to give

r(t, r0) =

[
1 +

(
1

r2
0

− 1

)
e−2t

]−1/2

and

θ(t, θ0) = t+ θ0.

Define by Σ the ray θ = θ0 that goes through the origin. This line is pierced

every t = 2π, hence the Poincaré Map is given by

P (r0) =

[
1 +

(
1

r2
0

− 1

)
e−4π

]−1/2

Obviously P (1) = 1, a fixed point. Its stability will depend on P ′(1), which

can be evaluated to be

P ′(1) = e−4π < 1

See Figure 44.
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Figure 44: The Poincaré Map of Example 6.5.
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7 Bifurcations

So far we have looked at the local and global behaviour of trajectories of

nonlinear dynamical systems of the form

ẋ = f(x)

In this lecture we will consider how the behaviour of this system changes as

f(x) changes. In particular, we consider dynamical systems of the form

ẋ = f(x,µ)

when the parameter µ ∈ Rp changes the structural stability of the vector field

(i.e. the qualitative behaviour of the system changes drastically). The variables

µ are called bifurcation parameters.

7.1 One-dimensional Bifurcations

We first concentrate on one-dimensional bifurcations. The simplest systems

that can exhibit these bifurcations are one-dimensional systems. Consider the

system

ẋ = f(x, µ)

with µ, x ∈ R. A bifurcation occurs when the number or type of equilibria

changes as we vary the parameter µ. There are three types of bifurcations:

saddle-node, transcritical and pitchfork.

Saddle-node bifurcation

The normal form of a dynamical system that could undergo a saddle-node

bifurcation is

ẋ = µ− x2

For this system, if µ > 0 there are two fixed points, one stable and one

unstable, that collide into a saddle point when µ = 0; for µ < 0 the saddle

point vanishes.

The above behaviour is usually depicted using a bifurcation diagram, which

shows the position of the fixed points on the x−axis versus the parameter µ.



Bifurcations 74

A solid line is used to denote how the stable fixed point varies as a function of

µ, while a dotted line is used to show the variation of an unstable equilibrium

versus µ. See Figure 45.

µ

x

µ = x2

Figure 45: A Saddle-Node bifurcation.

Transcritical Bifurcation

The normal form of a dynamical system that could undergo a transcritical

bifurcation is

ẋ = µx− x2

This system has two equilibria, one at x∗ = 0 and one at x∗ = µ, one stable

and one unstable, depending on the value of µ. At µ = 0 the two fixed points

merge into a saddle-point; on either side of µ = 0, the stability properties of

the two equilibria are ‘exchanged’. See Figure 46.

Pitchfork Bifurcation

The normal form in this case is

ẋ = µx− x3

For µ < 0 there is only one equilibrium point, at x = 0, which at µ = 0 ‘breaks’

into 3 equilibria, with the x = 0 equilibrium changing stability properties, while
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Figure 46: A Transcritical bifurcation.

the other two fixed points having the same equilibrium properties as the ones

of the x∗ = 0 equilibrium for µ < 0. The name of the bifurcation is obvious

from the shape of the bifurcation diagram - see Figure 47!

Figure 47: A Pitchfork bifurcation.
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Tangency Conditions

How can we decide when a bifurcation occurs? The ‘bifurcation point’, i.e. the

point where the nature of the stability of the equilibria changes can be found

by considering a set of tangency conditions. All the above bifurcations share

a certain tangency property of f(x) to the x−axis: therefore we can locate

candidate points (x0, µ0) for bifurcation events by solving the following system

of equations:

f(x0, µ0) = 0

fx(x0, µ0) = 0

where fx ,
∂f
∂x . Once such bifurcation candidates have been identified, then

certain sufficient conditions can be used to classify the type of bifurcation, as

follows:

• Saddle Node bifurcation:

f(x0, µ0) = 0

fx(x0, µ0) = 0

fµ(x0, µ0) 6= 0

fxx(x0, µ0) 6= 0

• Transcritical bifurcation:

f(x0, µ0) = 0

fx(x0, µ0) = 0

fµ(x0, µ0) = 0

fxx(x0, µ0) 6= 0

fxµ(x0, µ0) 6= 0
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• Pitchfork bifurcation:

f(x0, µ0) = 0

fx(x0, µ0) = 0

fµ(x0, µ0) = 0

fxx(x0, µ0) = 0

fxµ(x0, µ0) 6= 0

fxxx(x0, µ0) 6= 0

One can then devise an ‘algorithm’ for classifying bifurcations by checking all

derivatives as shown above and then deciding which type it ‘fits’ better.

The above sufficient conditions can be derived rigorously using the ‘implicit

function theorem’ - this is beyond the scope of this course.

Example 7.1. Consider the system

ẋ = µ lnx+ x− 1

Let f(x, µ) = µ lnx+x−1 then fx(x, µ) = µ
x +1. The solution of the system

f(x0, µ0) = 0

fx(x0, µ0) = 0

is

−x lnx+ x− 1 = 0

µ = −x

The first equation has a unique solution at x = 1 (how do you show that?),

hence a bifurcation can only occur when (x0, µ0) = (1,−1). Note also that

fµ(x, µ) = ln x⇒ fµ(1,−1) = ln 1 = 0

fxµ(x, µ) =
1

x
⇒ fxµ(1,−1) = 1 6= 0

fxx(x, µ) = − µ
x2
⇒ fxx(1,−1) = 1 6= 0

Therefore there is a transcritical bifurcation at (x0, µ0) = (1,−1).
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The above bifurcations can happen for higher-dimensional systems, with the bi-

furcations happening on a one-dimensional subspace of the higher dimensional

system under study.

Example 7.2. Does the origin of the system

ẋ = µx+ y + sinx

ẏ = x− y

undergo any bifurcation as µ varies? Linearizing about the (0, 0) equilibrium,

we get

J =

[
µ+ 1 1

1 −1

]
which is a stable node for µ < −2 (use the determinant condition) and a

saddle if µ > −2. In fact, around µ = −2 there may be other equilibria -

indeed, since x∗ = y∗, the equation

µx∗ + x∗ + sinx∗ = 0

reveals one equilibrium for µ < −2 and three for µ > −2. See Figure 48

for the bifurcation diagram and Figure 49 for the phase plane, for µ slightly

smaller and slightly larger than −2.

7.2 Hopf Bifurcations

Consider a two-dimensional system

ẋ = f(x, y, µ)

ẏ = g(x, y, µ)

Suppose, just as in the one-dimensional case, that (x∗(µ), y∗(µ)) is an equi-

librium as a function of µ. Let λ1(µ) and λ2(µ) be the eigenvalues of the

linearization of the system about this equilibrium. If these eigenvalues are real,

then the type of bifurcation we would expect would be similar in kind to one

of the cases seen in the one-dimensional case. If they are complex, however,

then we could get something more interesting.
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µ

x

Figure 48: The bifurcation diagram for Example 7.2

µ < -2 µ > -2

Figure 49: The phase plane for Example 7.2

We say that this system undergoes a Hopf bifurcation at µ = µ0 if the following

conditions are satisfied:

1. For µ < µ0 + ε and µ > µ0 − ε for ε > 0,

λ1,2(µ) = α(µ)± jω(µ)

2. α(µ0) = 0.

3. α(µ) < 0 for µ < µ0.



Bifurcations 80

4. α(µ) > 0 for µ > µ0.

See Figure 50.

x

x

x

x

x

x

λ1(µ)

λ2(µ)

Re(λ)

Im(λ)

Figure 50: The Eigenvalue Diagram during a Hopf Bifurcation.

There are three different types of Hopf Bifurcation:

• Supercritical Hopf bifurcation: For µ < µ0 we have a stable spiral fixed

point, which for µ > µ0 becomes an unstable spiral. The unstable spiral

is bounded by a stable limit cycle which expands with increasing µ. See

Figure 51. [Supercritical here means that a limit cycle appears/disappears

during the bifurcation, which is stable.]

• Subcritical Hopf bifurcation: For µ < µ0 a stable spiral is surrounded by

an unstable limit cycle. As µ increases, the unstable limit cycle becomes

smaller and at µ = µ0 the cycle collapses on a fixed point, which for

µ > µ0 behaves as an unstable spiral. See Figure 52. [Subcritical here

means that a limit cycle appears/disappears during the bifurcation, which



81 7.2 Hopf Bifurcations

Figure 51: A Supercritical Hopf Bifurcation.

is unstable.]

• Degenerate Hopf bifurcation: A stable spiral for µ < µ0 becomes a non-

linear centre at µ = µ0 and then an unstable spiral for µ > µ0. There is

no limit cycle at either µ < µ0 or µ > µ0, hence the name ‘degenerate’.

The normal form for a Hopf bifurcation is

ẋ1 = µx1 − x2 + σx1(x
2
1 + x2

2)

ẋ2 = x1 + µx2 + σx2(x
2
1 + x2

2)

This system undergoes a Hopf bifurcation at (0, 0) when µ = 0 (see examples

paper). This bifurcation is

• Supercritical if σ = −1.

• Subcritical if σ = 1.

• Degenerate if σ = 0.
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Figure 52: A Subcritical Hopf Bifurcation.

A simple way to classify the type of Hopf bifurcation is to use polar coordi-

nates.

Example 7.3. Consider the system

ẋ = µx− y + xy2

ẏ = x+ µy + y3

Consider the zero equilibrium; the Jacobian becomes[
µ −1

1 µ

]
with eigenvalues at µ± j. Therefore there is a Hopf bifurcation at (0, 0).

Let r2 = x2 + y2. Then we have:

rṙ = xẋ+ yẏ = x(µx− y + xy2) + y(x+ µy + y3) = µr2 + r2y2.

If µ > 0 then the eigenvalues have positive real parts; and since

ṙ = µr + ry2 ≥ µr
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this means that limt→∞ r(t) = +∞, i.e. there is no limit cycle when µ > 0.

If µ = 0 then ṙ = ry2 > 0 so r(t) is strictly increasing with no nonlinear

centre. Hence bifurcation is not degenerate.

Hence bifurcation is subcritical, as an unstable limit cycle appears for µ < 0.

There are more types of bifurcations, which are however beyond the scope of

this course.
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8 Chaos

In this lecture we will consider so-called chaotic systems. We will first discuss

the case of chaos in discrete-time systems, before we discuss briefly chaos in

continuous time systems. The reason we discuss discrete-time systems first,

is that we can have chaotic dynamics even if the dynamical system is one-

dimensional, if it is in discrete time.

8.1 Chaos in Maps

Certain maps are the simplest examples of chaos: the ‘trajectory’ of a map is

discrete and can ‘jump’ from one point to another. It is therefore expected

that more interesting behaviour can be exhibited in the case of maps.

Consider a map of the form

xk+1 = F (xk)

and recall from Lecture 2 that if x∗ = F (x∗) then x∗ is a fixed point. To

determine the stability of a map equilibrium we can proceed just as in the case

of a continuous-time system; linearization results in

wk+1 = DF (x∗)wk

and the position of the eigenvalues with respect to the unit circle determine

the stability of the equilibrium for the original map, unless the equilibrium is

not hyperbolic, which means that one of the eigenvalues has a modulus of 1.

Recall our discussion on stable, unstable and centre subspaces, as these were

analyzed in Question 2 of Examples Sheet 1.

Cobwebs

One way to understand the far from equilibrium behaviour of a system under

study, is to construct a cobweb. Given a map

xk+1 = f(xk)

and an initial condition x0, we draw on the x−axis xk, and on the y−axis

xk+1. For example, x1 will be the value of f(x0), and that can be found by
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drawing a vertical line from x0 until it intersects f(x). To find f(x2), we start

from x1, which can be found on the diagonal line xk+1 = xk and then move

vertically to find f(x2). See Figure 53.

Figure 53: A cobweb example.

Example 8.1. Consider the system xk+1 = cos xk. The cobweb shows that a

trajectory spirals in a fixed point around 0.739, which is the equilibrium point.

See Figure 54 for the cobweb in this case.

Logistic Equation

One of the most important one-dimensional maps is the logistic map:

xk+1 = rxk(1− xk)

which is used to model population growth (a single species striving for its own

food). There are two equilibria in this case, one of which is x∗ = 0 and the

other is at x∗ =
(
1− 1

r

)
. Linearization produces

wk+1 = (r − 2rx∗)wk
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Figure 54: The cobweb for example 8.1.

and so the x∗ = 0 equilibrium is stable for r < 1. In order to understand what

happens globally, one can use a cobweb to see that in the case of r < 1, the

population always goes extinct. See Figure 55.

Figure 55: The cobweb for the logistic equation, r < 1.

More interesting behaviour occurs for values of r > 1, when the 0 equilibrium

is unstable. What happens to the other equilibrium?
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Figure 56: Simulations of the logistic equation for different values of r.

It turns out that for 1 < r < 3 the system behaves as shown in Figure 56. In

fact the second equilibrium at
(
1− 1

r

)
is stable for 1 < r < 3 while for r > 3

one gets oscillations, whose period with increasing r doubles, in the sense that

the cycle repeats every four rather than two generations. As r increases further

this continues to double and bifurcations become faster and faster! In fact, for

r > 3.569946... the sequence is not periodic. An orbit diagram shows not only

the period doubling just described, but also that there are periodic windows

between chaotic regions – and if you ‘zoom in’ those regions then a miniature

copy of the orbit diagram appears... See Figure 57.

Figure 57: Orbit diagrams for the logistic equation for different ranges of r.

Two questions arise: first, how can we analyze the behaviour of the logistic

map in the regime where there seems to be ‘order’ and how do we characterize

the more ‘chaotic’ behaviour?

To understand, e.g., the stability of the 2-cycle, we can construct the second-

iterate map

xk+2 = f(f(xk)) = g(xk)
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and consider the stability of the equilibrium of interest. The equilibrium satis-

fies

r2x∗(1− x∗)[1− rx∗(1− x∗)] = x∗

whose roots are 0, (1− 1/r) and

x∗ =
r + 1 +

√
(r − 3)(r + 1)

2r
, x∗ =

r + 1−
√

(r − 3)(r + 1)

2r

Linearizing the double map around these equilibria we can obtain the region

where the 2-cycle is stable, and this happens at

3 < r < 1 +
√

6.

In the same way, we can calculate when the period doubles again etc., but this

quickly gets very complicated.

Lyapunov exponents

How do we know whether the aperiodic behaviour of the logistic map is

chaotic? For that, we need sensitivity on initial conditions: nearby initial

conditions separate exponentially fast on average. For example, consider two

initial conditions, x0 and x0 + w0 with w0 small. Let wk denote the kth sep-

aration. If the separation grows exponentially fast, i.e., |wk| ' |w0|eλk with

λ > 0 then we have chaos. The parameter λ is called the Lyapunov exponent.

Obviously,

f(x0 + w0) ' f(x0) + f ′(x0)w0

and so

x1 + w1 = f(x0 + w0) = f(x0) + f ′(x0)w0

and therefore w1 = f ′(x0)w0. In a similar fashion we obtain that w2 =

f ′(x1)w1 etc, and so

wk =
k−1∏
i=1

f ′(xi)w0

The Lyapunov exponent can then be calculated as

λ =
1

k

k−1∑
i=1

ln |f ′(xi)|
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and the limit as k →∞ is the Lyapunov exponent. See Figure 58 for how the

Lyapunov exponent varies with r.
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Figure 58: The Lyapunov exponent for the Logistic map.

8.2 Chaos in Flows

We mentioned in Lecture 5, that flows on the plane cannot exhibit chaotic

behaviour – in fact, the ω−limit sets can only be equilibria, limit cycles or

separatix cycles. But what can happen in three dimensions?

Consider the following system

ẋ = σ(y − x)

ẏ = rx− y − xz

ż = xy − bz

where σ, r, b are positive parameters – σ is called the Prandtl number and r is

called the Rayleigh number.

For r < 1 there is only one equilibrium of the system,

(x∗, y∗, z∗) = (0, 0, 0)
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For r > 1, two more equilibria appear,

(x∗, y∗, z∗) = (
√
b(r − 1),

√
b(r − 1), r − 1)

(x∗, y∗, z∗) = (−
√
b(r − 1),−

√
b(r − 1), r − 1)

In this case, at r = 1 the zero equilibrium goes into a pitchfork bifurcation.

One of the most important properties of the Lorentz equations is symmetry :

If (x(t), y(t), z(t)) is a trajectory then so is (−x(t),−y(t), z(t)) (you can see

this if you substitute (x, y) with (−x,−y): the equations stay the same).

Also, if we calculate ∇ · f we get

∇· f =
∂

∂x
(σ(y − x))+

∂

∂y
(rx− y − xz)+

∂

∂z
(xy − bz) = −(1+σ+b) < 0

i.e. the divergence of f is negative and so this system is volume contracting.

This means that the Lorenz system cannot have repelling fixed points or closed

orbits or even have quasi-periodic solutions as this would contradict the volume-

contracting properties. This essentially means that fixed points must be either

sinks or saddles and closed orbits must be stable or saddle-like.

Linearization of the system around the origin reveals that for r > 1 it is a

saddle point while for r < 1 it is a sink. Actually, for r < 1 the equilibrium is

globally stable as revealed by the Lyapunov function

V (x, y, z) =
1

σ
x2 + y2 + z2.

Hence, for r < 1 there are no limit cycles or chaos.

The stability of the other two equilibria is a bit harder to analyze. If we assume

that σ − b− 1 > 0 then they are both linearly stable for

1 < r <
σ(σ + b+ 3)

σ − b− 1
= rH

At rH the two equilibria undergo a Hopf bifurcation. For r < rH the two

equilibria are surrounded by an unstable limit cycle and so at r = rH the

equilibria undergo an subcritical Hopf bifurcation: for r > rH the equilibrium

changes into a saddle point and no attractors exist in the neighbourhood.
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And here is the mystery: for r > rH there is no stable equilibrium yet the

system is volume contracting. There must be a distant attractor – but Lorenz

showed that there is no stable limit cycles for r > rH and trajectories cannot

go to infinity. Therefore there must be a zero-volume object that attracts these

trajectories.

Simulations of the system in this regime show that the motion is aperiodic and

the phase-plane looks like a butterfly, called a strange attractor - an attractor

which shows sensitivity to initial conditions. See Figure 59.
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Figure 59: The Lorenz Attractor.

Just as in the case of maps, there is a certain sensitivity in the solution to

initial conditions. A similar calculation to the case of maps, we can calculate

the Lyapunov exponent indicating how small changes in initial conditions grow

as the system evolves.

So what is Chaos? One requires three ingredients to say that a system is

chaotic: aperiodic long-term behaviour; a deterministic system; and sensitivity

to initial conditions. Chaos is not a ‘cool’ word for bistability! It should be

used with caution.

8.3 Back to maps: Mandelbrot set

We have discussed the Mandelbrot set in Lecture 1. It involves the map

zk+1 = z2
k + c
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where z, c ∈ C. A point M = c is in the Mandelbrot set, if the trajectory

zj stays bounded, when the system is initialized from 0. The 2-dimensional

set of parameters (the real and imaginary parts of c), when plotted on an

Argand diagram result into very nice pictures. See Figure 60 but also browse

for Mandelbrot Java applets on the Internet!

Figure 60: The Mandelbrot set
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